HETEROCYCLES, Vol. 7, No. 1, 1977

SYNTHESIS OF 1,5-DIENES AND 6-AZABICYCLO[3.2.1]OCTANES VIA ω -CARBINOLLACTAMS

Anthonia R.C. Oostyeen, Jan J.J. de Boer and W. Nico Speckamp, Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands.

3,3-Disubstituted succinimides are reduced regioselectively at the 2 and 5 positions. The resulting ω-carbinol-lactams are used for synthesis of 6-phenyl--l,5-dienes and 6-azabicyclo[3.2.1]octanes, respectively.

The regioselective reduction of 3,3-disubstituted succinimides¹ with NaBH₄ at the most hindered carbonyl and the use of the so-obtained ω -alkoxylactams as precursors for the reactive α -acylimmonium ions have been reported to lead to new synthesis of various alkaloids.² On the contrary the chemistry of ω -carbinol-lactams obtained via reduction at the least hindered carbonyl is almost unexplored although the regioselectivity effect upon reductions of imides with diisobutylaluminum hydride was mentioned earlier by Winterfeldt.³

In the present communication both the regioselective $NaBH_4/H^+$ -reduction at the most hindered side and the reduction of 3,3-disubstituted imides with DIBAH³ at the least hindered side will be discussed especially in relation with novel synthetic applications. Use of two totally different chemical properties

(171)

of ω -carbinol-lactams - reaction as a masked aldehyde and as a precursor of the α -acylimmonium ion - could lead to new syntheses of 1,5-dienes and of azabicyclo[3.2.1]octanes.

I Synthesis of 1,5-dienes

Wittig type condensations can be carried out with ω -carbinollactams <u>A</u>, which proceed via the open chain amide-aldehyde tautomer <u>B</u>.⁴

This reaction at the masked aldehyde function coupled with the regioselective $NaBH_4/H^+$ reduction of disubstituted imides provides a new method for the synthesis of 1,5-dienes (see Scheme 1).

l-Methyl-3-phenyl succinimide <u>la</u> is alkylated with allyl and methallyl bromide by means of K_2CO_3 in DMF to afford imides <u>2a</u> and <u>2b</u>

"Acid" $NaBH_4$ -reduction of imides <u>2a</u> and <u>2b</u> produces mixtures of carbinol-lactams <u>3a,b</u> and <u>4a,b</u> in which the desired lactams <u>3a</u> and <u>3b</u> are existed as a form of epimeric mixtures in more than 80% yield.

Wittig reaction of <u>3a</u> with triphenylmethylphosphonium bromide and NaH in DMSO proceeds in rather poor yield (25%) affording <u>5a</u>, (¹H-NMR δ (CDCl₃): 4.8-5.2 m(4H) =C<u>H</u>₂ (2x); 5.3-5.7 m(2H) N<u>H</u> and CH₂-CH = CH₂; 5.8-6.2 m(1H) Ø-C-C<u>H</u>=CH₂). This observation

(172)

is in marked contrast with the behaviour of carbinol-lactams of which the ring is not substituted⁴ and again emphasizes the importance of a favourable tautomeric equilibrium ($\underline{A} \stackrel{s}{=} \underline{B}$) in this type of condensation. It was also noticed that a change in external conditions - variation of temperature and/or addition of base - does not improve the yields and instead gives rise to the formation of undesired products. Therefore the substrate itself was changed. Substitution of R¹ by a phenyl and a 3-nitrophenyl group was expected to produce a favourable effect: better stabilization of the developing negative charge at the nitrogen atom by the aromatic substituent during opening of the ring will ultimately influence the equilibrium $\underline{A} \stackrel{s}{\Rightarrow} \underline{B}$ in the desired manner.

(173)

Consequently the imides 2c,d and e were synthesized and reduced with NaBH, to give almost exclusively the carbinol-lactams 3c, 3d and 3e as a mixture of epimers. In case of 3c and 3d the latter could be separated via crystallization; 3c: m.p. 148-149°C; ¹H-NMR (CDCl₂): 4.8-5.6 m (4H) CHOH and CH=CH₂; <u>3d</u>: m.p. 148-150°C; $\delta(CDC1_3)$: 5.47 d(1H) CHOH J = 7.5 c/s; 4.4-4.7 m(2H) = CH2. 3e remained a crystalline mixture of epimers; m.p. 173- $174^{\circ}C$; ¹H-NMR (DMSO-D₆): 5.88 (d, J = 9.5 c/s) and 5.71 (d, $J = 8 \text{ c/s}, 1\text{H}, CHOH); 4.8-5.5 (m, 3\text{H}, CH=CH_2)$. As expected carbinol-lactams 3c reacted in a quantitative manner with methylene triphenylphosphorane to give diene <u>5c;</u> m.p. 95-97^OC; ¹H-NMR δ(CDCl₂) 5.0-5.5 (m, 4H, =CH₂x2); 5.5-6.3 (m, 2H, CH=Cx2); 6.65 (1H, NH). Wittig condensation with 3d was somewhat complicated by the fact that during the reaction the methallylic double bond partly isomerized. As a result only 70% of diene 5d m.p. 115-117^oC; ¹H-NMR δ(CDCl₂): 4.7-4.9 (m, 2H, -(CH₂) C=CH₂); 5.1-5.3 (m, 2H, CH=CH₂); 6.0-6.3 (m, 1H, CH=C); 6.7 (1H), NH) was isolated in addition to 30% of 7. Wittig reaction proceeds also quantitatively with the nitrophenyl compound 3e to give 5e; m.p. 121° dec; ¹H-NMR (CDCl₂): 5.0-5.4 (m, 4H, =CH₂x2); 5.4-6.3 (m, 2H, CH=Cx2); 6.95 (lH, NH).

Thermal rearrangements of 5c,d and e were achieved by heating the dienes at $180^{\circ}C$ without solvent in a nitrogen atmosphere. The products <u>6</u> (<u>E</u> + <u>Z</u>) were formed quantitatively. The E-isomers which are formed in excess (for ratios: see Scheme 1) crystallize and thus can be purified. Experimental data are collected in Table 1.

HETEROCYCLES, Vol. 7, No. 1, 1977

	^L H-NMR δ(CDCl ₃)			
E-isomers	m.p. ^O C	$C = CH_2$	R ₂ C=CH ₂	Ø
<u>6c</u>	113-115	4.9-5.3 m (2H)	R ² =H 5.6-6.0 m (lH)	6.0-6.2 m (lH)
<u>6d</u>	109-111	4.5-4.8 m (2H)	$R^2 = CH_3$ 1.5-1.7 m (3H)	6.0-6.2 m (lH)
<u>6e</u>	132-135	5.1-5.3 m (2H)	$R^2 = H$ 5.8 - 6.4 m (2H)	

TABLE 1

Structural assignment of the E- and Z-isomers $\underline{6}$ were based upon a comparison of δ -values with corresponding ones of substituted styrenes.⁵

II Synthesis of 6-azabicyclo[3.2.1]octanes.

The recent interest in azabicyclo[3.2.1]octanes because of their potentially analgetic action,⁶ prompts us to report our results on a simple synthesis of l-phenyl-6-azabicyclo[3.2.1]-octane derivatives via DIBAH-reduction of 3,3-disubstituted imides.

If a regioselective reduction of appropriate 3,3-disubstituted succinimides at the least hindered side can be effected, imides <u>2a</u> and <u>2b</u> are suitable starting materials for this synthesis. Subsequent acid catalyzed cyclization of the so-obtained carbinol-lactams is expected to furnish the azabicyclo-[3.2.1]octane skeleton (see Scheme 2).

Indeed it showed that upon reduction of <u>2a</u> and <u>2b</u> with DIBAH (20% solution in toluene) at -70° C exclusively the least hindered carbinol-lactams <u>8a</u> and <u>8b</u> were isolated as an oily mixture of epimers. Cyclization⁷ of <u>8a</u> was carried out by heating in formic acid at 87° C during 70 hr. A mixture of the formates <u>9a</u> and <u>10a</u> was formed in 70% yield in a ratio of about 3:2. After purification by chromatography both isomers were characterized by ¹H-NMR; <u>9a</u> δ (CDCl₃): 2.93 (s, 3H, N-CH₃); 3.7-3.85 (m, 1H, <u>H</u>-C-N); 4.8-5.2 (m, 1H, CH-OC); 8.05 (s, 1H, -OCH); <u>10a</u> δ (CDCl₃): 2.89 (s, 3H, N-CH₃); 3.63-3.8 (m, 1H, <u>H</u>-C-N); 5.35-5.52 (m, 1H, CH-OC); 8.0 (s, 1H, OCH). Basic hydrolysis afforded the corresponding crystalline alcohols <u>11</u>, m.p. 121-123^oC, and <u>12</u>, m.p. 181-183^oC. Ring closure of carbinol-lactam <u>8b</u> was accomplished with formic acid at room temperature within 1 hr. Unlike the cyclization of <u>8a</u> this ring closure proceeds in a stereospecific manner: only one isomer can be detected: <u>9b</u>, m.p. 106,5-109^oC; ¹H-NMR δ (CDC1₃): 1.67 (s, 3H, CH₃-C-O); 2.84 (s, 3H, N-CH₃); 3.65-3.78 (m, 1H, H- \dot{c} -N); 7.93 (s, 1H, \dot{O} CH).⁸

Although the configuration at C-3 could not be determined unambiguously, the formate residue probably occupies an equatorial position for mechanistic⁷ and steric reasons.

REFERENCES

1 J.B.P.A. Wijnberg, W.N. Speckamp and H.E. Schoemaker, Tetrahedron Letters, 1974, 4073.

2a J.B.P.A. Wijnberg and W.N. Speckamp, <u>Tetrahedron Letters</u>, 1975, 3963;

b J.B.P.A. Wijnberg and W.N. Speckamp, <u>Tetrahedron Letters</u>, 1975, 4035.

3 E. Winterfeldt, Synthesis, 1975, 617.

4 J.J.J. de Boer and W.N. Speckamp, <u>Tetrahedron Letters</u>, 1975, 4039.

5 M. Barbieux, N. Defay, J. Pecher and R.H. Martin, <u>Bull.Soc</u>. Chim.Belg., 1964, 73, 716.

6a M. Takeda, H. Inoue, K. Noguchi, Y. Honma, M. Kawamori, G. Tsukamoto and S. Saito, <u>Chem. and Pharm.Bull</u>.Japan, 1976, 24, 1002;

(177)

b M. Takeda, H. Inoue, K. Noguchi, Y. Honma, M. Kawamori,
G. Tsukamoto, Y. Yamawaki and S. Saito, <u>Chem. and Pharm.Bull.</u>,
Japan, 1976, 24, 1514.

c M. Takeda, H. Inoue, K. Noguchi, Y. Honma, M. Kawamori,
G. Tsukamoto, Y. Yamawaki, S. Saito, K. Aoe, T. Date,
S. Nurimoto and G. Hayashi, <u>J.Medicin.Chem</u>., 1977, 20, 221.
7a J. Dijkink and W.N. Speckamp, <u>Tetrahedron Letters</u>, 1975, 4047;

b J. Dijkink, H.E. Schoemaker and W.N. Speckamp, <u>Tetrahedron</u> Letters, 1975, 4043.

8 All new compounds showed satisfactory microanalyses.

Received, 14th June, 1977