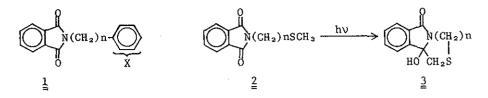
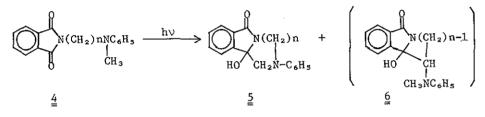
REMOTE PHOTOCYCLIZATION.

PHOTOCHEMICAL MACROCYCLIC SYNTHESIS WITH N-(ω-METHYLANILINO)ALKYLPHTHALIMIDES^L


M<u>inoru Machida</u>, H<u>aruko</u> T<u>akeçhi</u> Faculty of Pharmaceutical Sciences, Higashi Nippon Gakuen University Ishikari-Tobetsu, Hokkaido 061-02 and Y<u>uichi</u> K<u>anacka</u>* <u>Faculty of Pharmaceutical Sciences, Hokkaido University</u> <u>Sapporo 060, Japan</u>

Upon irradiation a homologous series of N-(ω -methylanilino)alkylphthalimides $\frac{4}{2}$ undergo regioselective remote photocyclization


During the last decade the widespread involvement of charge-transfer complexes and exciplexes in photoreactions has been increasingly recognized and analyzed.² We have recently found that, in the photolysis of N-aralkylphthalimides $\underline{1}$ (X = electron-donating substituents), the cyclization occured best when n equaled 4, <u>i.e.</u>, when the usually unfavorable 8-membered transition state could be formed.³ Furthermore, certain phthalimides $\underline{2}$ possessing a terminal sulfide function in their N-alkyl side chain undergo unusually facile regioselective remote photocyclization to give macrocyclic azathiacyclols $\underline{3}$.⁴ We now wish to report the new examples of the photocyclization of such bichromophoric systems in which an anilino group plays a role as the

to give medium- to large-sized diazacyclols 5.

second chromophore.

A homologous series of N-(ω -methylanilino)alkylphthalimides (4), with side chains varying from n = 1 to 12, were prepared by reactions of ω -bromoalkylphthalimides and N-methylaniline. A solution of 4 (2.4 - 3.6 M; acetone : pet. ether = 1 : 2.7) was irradiated with a 500-W high-pressure mercury lamp in a stream of nitrogen for 1.5 - 2.5 hr. As listed in Table I,⁵ in all examples studied the photolysis afforded mainly the expected cyclized products, up to 16-membered ($\underline{5h}$), as a result of C-C bond-formation between the imide carbonyl and the N-methyl group, though the isolation yields were relatively low.

In a representative example, the structural assignment for $\underline{5c}$ was based on: (i) the presence of the cyclol moiety [amide (ir, CHCl₃, 1690 cm⁻¹), hydroxyl (3300 cm⁻¹) and a methylene (instead of methyl in $\underline{4c}$; NMR (CDCl₃), 3.95 ppm, s)]; (ii) the composition [mass m/e M⁺, 294; elemental analysis] and (iii) by analogy with the previous cyclization.⁴ In most cases examined ($\underline{5b}$ -<u>h</u>), they were readily converted by treatment with HCl-EtOH to the corresponding dehydrated products (<u>7</u>) in support of the postulated cyclol structures.

Much attention has recently been centered on "remote" photoreactions with regard to theoretical studies of cyclization 6 and reactions of nonconjugated

bichromophoric systems.⁷ In the latter molecules, processes may occur which do not take place in a solution of the monofunctional derivatives. In fact, Davidson and Lewis reported that the compounds $(\frac{4a}{2}-\frac{d}{2})$ do exhibit charge-transfer transitions in their uv spectra.⁸ In addition, the higher

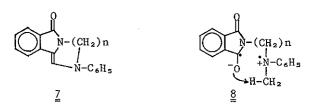

Substrate		Product 5				
	n	ring size	mp(°C)	% yield	(starting material)	
a	1	5	177 - 178.5	13	(83)	
b	2	6	169 ~ 170.5	12	(61)	
Ē	3	. 7	206 - 207.5	20	(63)	
₫	4	8	207.5 - 209	6 ^{a)}	(73)	
Ē	5	9	192 - 194	15	(66)	
f	6	10	159 - 161	10	(51)	
g	10	14	176 - 177	8	(16)	
h	12	16	191 - 192	9	(22)	

Table I Photoproducts from 4

a) accompanied by 6d (mp 199 - 201°; 5 %).

homologs $(\underline{4\underline{e}}-\underline{\underline{h}})$ also showed the similar absorption although the intensity was relatively low. However, wavelength dependency studies of this cyclization revealed that the excitation of the charge-transfer absorption region is not significant for the reaction.

It is worth noting that in a flexible system such as $\frac{4}{2}$ the medium and large rings are formed with facility and regioselectivity. Tentatively the remote photocyclization may be rationalized by rapid proton transfer from an amino cation radical $\frac{8}{2}$ initially formed by electron transfer by virtue of a postulated charge-transfer complex in the excited state.⁹ This assumption, coupled with the results from $\frac{1}{2}^{3}$ and $\frac{2}{2}^{4}$, encourages applications of the "photolysis of donor-acceptor pair systems" for general synthetic purposes.

ACKNOWLEDGEMENT This work was supported in part by grants from the Ministry of Education, Science and Culture.

REFERENCES AND NOTES

- 1 a) Photoinduced Reactions. XXXI. Part XXX: Y. Kanaoka and E. Sato, submitted. b) Photochemistry of the Phthalimide System. XVII. Part XVI: ref. 1a).
- 2 M. Gordon and W.R. Ware, Ed., "The Exciplex", Academic Press, New York, 1975.
- 3 Y. Kanaoka and Y. Migita, Tetrahedron Lett., 1974, 3693.
- 4 Y. Sato, H. Nakai, T. Mizoguchi, Y. Hatanaka, and Y. Kanaoka, <u>J. Am. Chem.</u> <u>Soc.</u>, 1976, <u>98</u>, 2349.
- 5 All new compounds gave satisfactory analyses and their structures were supported by spectral (uv, ir, NMR, Mass) data.
- 6 M.A. Winnik, <u>Accounts Chem. Res.</u>, 1977, <u>10</u>, 173.
- 7 F.C. De Schryver, N. Boens, and J. Put, "Advances in Photochemistry", eds. by J.N. Pitts, Jr., G.S. Hammond, and K. Golinick, Interscience, New York, 1977, Vol. 10, p. 359.
- 8 R.S. Davidson and A. Lewis, <u>Tetrahedron Lett</u>., 1974, 611.
- 9 The similar mechanism has been put forward also for intermolecular photoreactions of phthalimides and amines.¹⁰ When this manuscript was in preparation, an analogous photocyclization of N-(dibenzylaminomethyl)phthalimide was reported; J.D. Coyle and G.L. Newport, <u>Tetrahedron Lett.</u>, 1977, 899.
- 10 Y. Kanaoka, K. Sakai, R. Murata, and Y. Hatanaka, <u>Heterocycles</u>, 1975, <u>3</u>, 719.

Received, 16th July, 1977