SYNTHESIS OF ADAMANTANE DERIVATIVES. 39.¹ SYNTHESIS AND ACIDOLYSIS OF 2-AZIDOADAMANTANES. A FACILE ROUTE TO 4-AZAHOMOADAMANT-4-ENES

<u>Tadashi Sasaki, * Shoji Eguchi</u>, and <u>Nao Toi</u> <u>Institute of Applied Organic Chemistry, Faculty of Engineering</u>, <u>Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464, Japan</u>

> 2-Azidoadamantanes 10b-f and 4-azahomoadamant-4enes lla-e were obtained in good yields on treatment of the corresponding alcohols 9a-f with NaN₃ in 57%- $H_2SO_4-CH_2Cl_2$ and in $CH_3SO_3H-CHCl_3$, respectively. Azides 10a-e gave also 11a-e on decompositions in $CH_3SO_3H-CHCl_3$, while 10f afforded only adamantylideneaniline.

We have recently reported an efficient and convenient synthesis of 1-azidoadamantane (2) and 3-hydroxy-4-azahomoadamantane (3) from 1-hydroxyadamantane (1).² This procedure consists of substitution of a hydroxyl group with azide function <u>via</u> carbocation, followed by acidolysis of the produced azides (eq.1).³ On the other hand, the

Schmidt reaction of adamantanone (4) is known to afford 6 or 8 (fragmentation and π -route cyclization products) and 7 (re-

(315)

In view of above interesting behaviors of azidoadamantanes on acidolysis, we have examined the reactions of 2-hydroxyadamantanes 9a-f with hydrazoic acid under acidic conditions.

Secondary alcohol 9a did not react with in situ generated hydrazoic acid (4-fold excess to 9a) in $57\%H_2SO_4-CH_2Cl_2$ but in $97\%H_2SO_4-CHCl_3$, 9a afforded 3 in ca. 30% yield accompanied with several side products. The results could be rationalized by consideration of the well known intermolecular hydride transfer to afford 1-adamantylcation which reacted with HN₃ (Scheme I).^{2,5} However, when 9a was added to an

ice-cooled and stirred mixture of HN_3 (5-fold excess) in $CH_3SO_3H-CHCl_3$ and the mixture was stirred for 5 hr at 20-25°, 4-azahomoadamant-4-ene (11a) was obtained as a very sublimable solid (61% yield). The structure was assigned on the basis of analysis, mass spectral molecular weight ($\underline{m/e}$ 149, M^+), ir and pmr spectral data (Table III) as well as NaBH₄ reduction to known 4-azahomoadamantane (12a)⁶ (Scheme II). Furthermore, 2-azidoadamantane (10a) was prepared in 32% yield from 2-aminoadamantane (13) by treatment with <u>n</u>-BuLi, followed by the reaction with <u>p</u>-toluenesulfonyl azide,³ and the decom-

(316)

position of 10a in CH_3SO_3H -CHC1₃ afforded also exclusively the imine 11a (Table II).

Tertiary alcohols 9b-f afforded azides 10b-f in good yields on treatment with NaN₃ in $57\%H_2SO_4$ -CH₂Cl₂ as shown in Scheme II and Table I. NaNa/MeSO₃H

On decomposition in CH_3SO_3H -CHCl₃, azides 10b-e afforded also 5-alkyl-4-azahomoadamant-4-enes 11b-e in good yields as summarized in Table II. The structures of 11b-e were supported by anlytical and spectral data (Table III) as well as reduction of 11b to 12b. Imine 11b, on refluxing with NaBH₃(OAc) in dioxane for 7 hr, gave 12b which was characterized as hydrochloride (46% yield): mp 295-8° (dec);⁷ ir (KBr) 3200-2400 cm⁻¹; pmr (CDCl₃-D₂O) δ 4.0-3.3 (m, 2H), 2.66-1.30 (m, 16H) and 1.53 (d, J=7.0Hz, 3H). Imines 11a-e gave the corresponding hydrochlorides, all of which revealed characteristic ir absorptions at 1675-1680 cm⁻¹ due to $v_{C=N}+_{H}$ (Table III). Since the formation of 11a-e depends on the larger migratory aptitude of C₁-C₂ bond of adamantane nucleus than R group in 10a-e, decomposition of 10f, R=C₆H₅ is

(317)

Pre-	Azide	Mp,°C	Ir	Pmr(CDC1 ₂ ,Formula		Analysisb			
cur- sor	(Yield, %)	or np (temp,°C)	(film) cm-1	60MHz) δ		С	Н	N	
13	<u>10a</u> (32.7)	30-35	2100	$3.79(s,1), C_{10}H_{1}$ 2.5-0.5 (m 14)	5 ^N 3 ^F C	67.76 67.76	8.71 8.53	23.53 23.71	
<u>9</u> 5	10b (92.4)	35-36	2120 2090	(m, 14), (m, 14), (1, 46)	7 ^N 3 ^F C	68.95 69.07	8.81 8.96	22.23 21.97	
9 <u>c</u>	10c (91.1)	1.5252 (30.0)	2090	$2.4-1.2$ $C_{12}^{H_{12}}$ (m,16), 0.94(t, 7.5Hz 3)	9 ^N 3 ^F C	70.36 70.20	9.29 9.33	20.34 20.47	
9 <u>d</u>	1 <u>0d</u> (75.0)	1.5172 (29.3)	2090	$2.4-0.7$ $C_{14}^{H_2}$ (m,20), $0.95(t, 55H_7, 3)$	3 ^N 3 ^F _C	72.23 72.06	9.66 9.93	18.10 18.01	
9e ≁	10e (70.8)	1.5767 (23.2)	2100	7.17(s,5),C ₁₇ ^H 2 3.05(s,2), 2.4-1.3 (m 14)C	1 ^N 3 ^F C	76.30 76.37	8.16 7.92	15.54 15.71	
9£	<u>10f</u> (89.7)	44.5- 45.6	2090	$(m, 14)^{-}$ 7.8-7.3 $C_{16}^{H_1}$ (m, 5), 3.0-1.46 (m, 14)	9 ^N 3 ^F C	76.05 75.85	7.49 7.56	16.72 16.59	

Table I. Synthesis of 2-Azidoadamantanes 10a-fa

^a Azide 10a was prepared by the diazo-transfer method, while 10b-f were obtained by stirring 9b-f with NaN3 (4-fold excess) in 57%H2SO4-CH2Cl2(1:1,v/v) for 3-5 hr at 20-25°, followed by µsual work-up and chromatography (silica gel, <u>n</u>-pentane-CH₂Cl₂). ^b F=Found and C=Calcd. In CCl4.

TableII. Synthesis of 4-Azahomoadamant-4-enes11a-efrom2-Hydroxyadamantanes9a-eandAzides10a-e

Pre- cur- sor	Mol.ratio of NaN3 to alcohols	$CHC1_3:$ CH_3SO_3H (v/v)	React. time, hr	Imine	Yield,	Purification Method
90000000000000000000000000000000000000	$5.0 \\ 0 \\ 4.0 \\ 0 \\ 4.0 \\ 0 \\ 10.0 \\ 0 \\ 10.0 \\ 0 $	1:1 3:2 1:1 4:5 1:1 1:1 1:2 1:2 1:2 1:2	$5.0 \\ 0.5 \\ 1.5 \\ 0.8 \\ 4.0 \\ 2.0 \\ 2.0 \\ 1.0 \\ 19.0 \\ 2.0$		60.9 65.0 75.3 68.8 67.7 81.8 89.3 74.5 44.6 46.9	sublimation (90°, 20 mm) Kugel rohr distln. (70-80°, 0.4 mm) Kugel rohr distln. (88-95°, 0.4 mm) Kugel rohr distln. (90-95°, 0.4 mm) chromatography (alumina, CH_2C1_2)

^a Adamantylidenebenzylamine was also produced in <u>ca</u>. 45% yield.

Imine	Ir, ^a	Pmr CDC1 60MHz) ^b &	Formula		Analysis ^C		
n _D , temp)	Cm -	(DC13, 00/112), 0			С	Н	N
<u>11a</u> (215-8)	1650	8.07 (d, 6.0Hz, 1), 4.33-3.90 (m, 1), 3.0-2.4 (m, 1) 2.35-1.35 (m, 12)	C ₁₀ H ₁₅ N	F C	80.34 80.48	10.03 10.13	9.63 9.39
11aHC1 (276-9, dec)	3200- 2400, 1680	9.00(d,6.0Hz,1), 4.5-4.15(m,1), 3.5-3.0(m,1), 2.5-1.4(m,12)	C ₁₀ H ₁₆ NC1	F C	64.61 64.68	8.86 8.69	7.44 7.54
<u>11b</u> (1.5155, 22.0)	1660	3.97(t,4.0Hz,1), 2.57(t,4.0Hz,1), 2.00(s,3), 1.9-1.5(m.12)	C ₁₁ H ₁₇ N	F C	81.20 80.92	10.33 10.50	8.47 8.58
<u>11</u> bHC1 (278- 280,dec)	3200- 2400, 1680	4.27 (bs,1), 2.92 (bs,1), 2.75-1.5 (m,15)	C ₁₁ H ₁₈ NC1	F C	66.15 66.16	8.94 9.08	6.92 7.01
11c (1.5154, 29.5)	1665	4.2-3.8(m,1), 2.78-2.45(m,1), 2.23(q,7.0Hz,2), 2.44-1.5(m,14), 1.07(t,7.0Hz,3)	^C 12 ^H 19 ^N	F C	81.60 81.30	10.58 10.80	7.82 7.90
11cHC1 (160-2)	3300- 2400, 1675	4.35(bs,1), 3.2-2.7(m,3), 2.5-1.5(m,12), 1.32(t,7.0Hz,3)	C ₁₂ H ₂₀ NC1	F C	67.61 67.43	9.65 9.43	6.42 6.55
<u>11d</u> (1.5074, 30.0)	1660	4.01(t,3.0Hz,1), 2.62(t,3.0Hz,1), 2.45-1.15(m,18), 0.95(t,5.3Hz,3)	C ₁₄ H ₂₃ N	F C	81.61 81.89	11.46 11.29	6.95 6.82
11dHC1 (148- 153)	3200- 2400, 1680	4.31(bs,1), 2.94(bs,3), 2.5-0.8(m,19)	C ₁₄ H ₂₄ NC1	F C	69.53 69.54	9.91 10.00	5.64 5.79
1 <u>1</u> e (84-8)	1660, 1600, 740, 680	8.2-7.1(m,5), 4.28(t,3.0Hz,1), 3.32(t,3.0Hz,1), 2.4-1.6(m,14)	C ₁₇ H ₂₁ N	F C	85.61 85.31	8.59 8.84	6.14 6.85
<u>11e</u> HC1 (167- 170)	3400- 2400, 1685, 1600, 750, 690	8.1-7.1(m,5), 4.60(bs,1), 3.11(bs,1), 2.5-1.5(m,14)	C ₁₇ H ₂₂ NC1	F C	74.03 74.03	7.92 8.04	4,79 5.08

Table III. Physical and Analytical Data of Cyclic Imines <u>lla-e</u> and Their Hydrochlorides

^a In KBr for solids and film for oils. ^bHydrochlorides were measured in $CDC1_3$ - D_2O , and bs =broad singlet. F=Found and C=Calcd.

expected to afford a phenyl migration product rather than a ring-expanded product by considering the well known larger migratory tendency of a phenyl group.³ In fact, 10f decomposed in CH_3SO_3H -CHCl₃ to afford only adamantanone (4) and aniline (15), which indicated the formation of adamantylidene-aniline (14),⁸ the phenyl migration product. Also, in the decomposition of 10e, a considerable amount (<u>ca</u>.45%) of adamantylidenebenzylamine was produced as well as 11e.⁹

The imines <u>llb-e</u> were obtained also directly from alcohols <u>9b-e</u> on treatment with NaN_3 in CH_3SO_3H -CHCl₃ (Table II). Therefore, above described procedures provide facile synthesis of 2-alky1- or 2-ary1-2-azidoadamantanes and 5-unsubstituted and 5-alky1-4-azahomoadamant-4-enes.

REFERENCES AND NOTES

- 1 Part 38: T. Sasaki, S. Eguchi and S. Hattori, <u>Tetrahedron</u>, in press.
- 2 T. Sasaki, S. Eguchi, T. Katada and O. Hiroaki, <u>J. Org.</u> <u>Chem</u>., in press.
- 3 For a recent general review, see "The Chemistry of the Azide Group", S. Patai, Ed., Interscience, New York, N. Y., 1971.
- 4 T. Sasaki, S. Eguchi and T. Toru, <u>J. Org. Chem</u>., <u>35</u>, 4109 (1970).
- 5 R. C. Fort, Jr., "Adamantane", Marcel Dekker, Inc., New York, N. Y., 1976, pp 181-186.
- 6 T. Sasaki, S. Eguchi and T. Toru, Chem. Commun., 1285(1969).
- 7 All mps were measured in a sealed tube and are uncorrected. All new compounds gave correct combustion analyses. Alcohols 9a-d were prepared by the known procedures, and 9e, mp 54-7°, and 9f, mp 75-8°, were prepared by the Grignard reaction of 4 and had satisfactory spectral data.
- 8 T. Sasaki, S. Eguchi and Y. Hirako, Tetrahedron, 32, 437 (1976).
- 9 The structural analysis of <u>lle</u> should be considered as tentative because of appearance of benzylic methylene at abnormally higher field in the pmr spectrum.

Received, 30th July, 1977