HETEROCYCLES, Vol. 7, No. 1, 1977

STUDIES ON POTENTIAL ANTITUMOR AGENTS (II). Thiosemicarbazones of p-Bromophenyl- and o-Chlorophenylpyridine-2-carboxaldehydes

Lian-Fang Lin , Shwu-Jiuan Lee , and Chao-Tung Chen* Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 115 Republic of China

Thiosemicarbazones of eight p-bromophenyl- and o-chlorophenylpyridine-2-carboxaldehydes have been synthesized. Tumor-inhibitory potency and host toxicity of these compounds were assessed in mice bearing Sarcoma 180 ascites cells.

4-(m-Aminophenyl)pyridine-2-carboxaldehyde thiosemicarbazone was reported to have potential antitumor activity on mice bearing Sarcoma 180 ascites cells.¹ A previous communication from This Laboratory² described synthesis of thiosemicarbazones of p-chlorophenyl- and mchlorophenylpyridine-2-carboxaldehydes. The present study was undertaken to prepare further thiosemicarbazones of p-bromophenyl- and ochlorophenylpyridine-2-carboxaldehydes for biological evaluation.

p-Bromophenyl-2-picolines were synthesized by a procedure similar to the arylation of 2-picoline with diazotized p-chloroaniline² (scheme 1). p-Bromoaniline (103.2 g) was diazotized at 0° and the resulting solution was added dropwise to 2-picoline (300 ml) at 40°. The reaction mixture was kept at 80° for 30 minutes and worked up as usual² to obtain 38 g of a semisolid, which was chromatographed on silica gel and on neutral alumina. Four isomeric p-bromophenyl-2-picolines (1-4) were obtained pure. The isomers were differentiated by nmr studies

(347)

(Table I). These arylpicolines (1-4) were oxidized with selenium dioxide in refluxing dioxane to p-bromophenylpyridine-2-carboxaldehydes (5-8), which were converted to thiosemicarbazones (9-12). These compounds are listed in Table II.

o-Chlorophenyl-2-picolines resulted from the reaction of 2-picoline and diazotized o-chloroaniline in a similar fashion except that the reaction mixture was maintained at pH 4-5. This reaction gave, after chromatography, 3-, 4-, 6- and a mixture of 3- and 5-(o-chlorophenyl)-2-picolines (13-16). Selenium dioxide oxidation of these methyl compounds gave corresponding aldehydes (17-20), the mixture of 3- and 5- isomers being separated by chromatography. The aldehydes were converted to thiosemicarbazones (21-24). These results are listed in Table III.

Biological evaluation of these thiosemicarbazones on mice bearing Sarcoma 180 ascites cells showed 4-(o-chlorophenyl)-pyridine-2carboxaldehyde thiosemicarbazone to be the best.

Soheme I.

Compd	Position of aryl group substitution	2-Methyl protons (3H, s)	Protons on phenyl and pyridine rings	H-6 on pyridine ring (1H, dd)	Proton of aldehyde CHO (1H, s)
1	3	2.45	7.03-7.73 (6H, m)	8.53 J=5,2 Hz	
2	4	2.53	7.13-7.70 (6H, m)	8.53 J=5, 1 Hz	
3	5	2,53	7.06-7.79 (6H, m)	8.76 J=2,1 Hz	
4	6	2,56	7.03-8.09 (7H, m)		
5	3		7.00-7.83 (6H, m)	8.82 J=5,2 Hz	10.05
6	4		7.20-8.13 (6H, m)	8.75 J≈5,1 Hz	10.05
7	5	·	7.30-8.23 (6H, m)	9.00 J=2,1 Hz	10.10
8	6		7.13-8.03 (7H, m)		10.03
13	3	2,34	7.10-7.90 (6H, m)	8.65 J=5,2 Hz	
14	4	2.63	7.13-7.73 (6H, m)	8.71 J=5,1 Hz	
16	6	2,61	7.10-7.90 (7H, m)		
17	3		7.03-7.83 (6H, m)	8.78 J=5,2 Hz	9.91
18	4		7.06-8.06 (6H, m)	8.77 J=5,1 Hz	10.05
19	5		7.13-8.00 (6H, m)	8.73 J≑2,1 Hz	9.98
20	6		7.10-8.00 (7H, m)		10.04

Table I. NMR Data*

*NMR Spectra were recorded on a JEOL-C-60-HL High Resolution NMR Instrument. The chemical shifts are reported in ppm downfield from internal TMS. Compounds 1, 2, 3, 4, 19 were dissolved in CCl₄, all others in CDCl₃.

Table 1	II. Com	pounds of	p-Bromo	phenyl	Series
---------	---------	-----------	---------	--------	--------

		Position of				Mass
Compd ^a	R	p-Bromopheny Substitution	Mp (Bp) °C	% Yield	Formula	Spectra (M ⁺)
1	CH ₃	3	50.5-51.5	13.7 ^b	C12 ^H 10 ^{BrN}	247
2	CH ₃	4	75-76.2	20.7 ^b	$C_{12}^{H}_{10}^{BrN}$	247
3	сн ₃	5	100-101	6.2 ^b	$C_{12}H_{10}BrN$	247
4	CH ₃	6	75	59.4 ^b	C ₁₂ H ₁₀ BrN	247
5	CHO	3	87-88	78(196) ^C	C ₁₂ H ₈ BrNO	261
6	СНО	4	101-102	47(286) ^C	$C_{12}^{H}B^{BrNO}$	261
7	CHO	5	137-138.5	52.6(135) ^C	$C_{12}^{H}_{8}BrNO$	261
8	СНО	6	84-85.5	72(297) ^C	$C_{12}H_8BrNO$	261
9	CH=NNHCSNH2	3	218.5-220 (dec)	87.3	C ₁₃ H ₁₁ BrN	4 ^S
10	CH=NNHCSNH2	4	217.5-220 (dec)	81	C ₁₃ ^H 11 ^{BrN}	$_4^{S}$
11	CH=NNHCSNH2	5	235-237 (dec)	77	C ₁₃ H ₁₁ BrN	4 ^S
12	CH=NNHCSNH2	6	217-219 (dec)	79	C13 ^H 11 ^{BrN}	4 ^S

a. All compounds are new.

b. Yields are based on the recovery of various isomers from a mixture obtained in 7.0% yield from the arylation of 2-picoline with p-bromoaniline.

c. Reflux time (hours) in selenium dioxide oxidation of the 2-picolines.

Compd ^a	R	Position of o-Chloropheny Substitution	yl Mp (Bp) °C	% Yield	Formula	Mass Spectra (M ⁺)
13	СНз	3	>300(Bp)	35.5 ^b	C12 ^H 10 ^{C1N}	203
14	CH3	4	37-38.5	9.6 ^b	C12 ^H 10 ^{C1N}	203
15	CH ₃	3,5 ^d	>300(Bp)	6.1 ^b	C12 ^H 10 ^{C1N}	203
16	CH3	6	>300(Bp)	48.8 ^b	C12 ^H 10 ^{C1N}	203
17	CHO	3	81-82	70.1(103) ^c	C12 ^H 8 ^{C1NO}	217
18	CHO	4	68-70	43.4(110) ^c	C12H8CINO	217
19	CHO	5	68-69.5	57.5(102) ^c	C12 ^H 8 ^{CINO}	217
20	CHO	6	86-86.5	78(147) ^C	C12H8C1NO	217
21	CH≐NNHCSNH2	3	204-205 (dec)	88	C13 ^H 11 ^{C1N} 4	S
22	CH≂NNHCSNH ₂	4	207-208.5 (dec)	86	C13 ^H 11 ^{C1N} 4	S
23	CH=NNHCSNH2	5	204-205 (dec)	91	C ₁₃ ^H 11 ^{C1N} 4	S
24	CH=NNHCSNH 2	6	187-188.5 (dec)	85	$C_{13}^{H}_{11}CIN_{4}$	S

a. All compounds are new.

b. Yields are based on the recovery of various isomers from a mixture obtained in 13.5% yield from the arylation of 2-picoline with o-chloroaniline.

c. Reflux time (hours) in selenium dioxide oxidation of the 2-picolines.

d. Mixture of 3- and 5- isomers.

REFERENCES

- I. K. C. Agrawal, A. J. Lin, B. A. Booth, J. R. Wheaton, and A. C. Sartorell, J. Med. Chem., <u>17</u>, 631 (1974).
- C. T. Chen, S. F. Chen, and S. J. Lee, Heterocycles, <u>5</u>, 239 (1976);
 Bull. Inst. Chem. Academia Sinica, No. 24, p. 53, 1977.

ACKNOWLEDGEMENT

We thank National Science Council for a fund through Chemistry Research Center, National Taiwan University.

Received, 23rd July, 1977