SYNTHESIS OF 4-ARYL-2-PICOLINES

Cheng-Hsia Wang and Jhy-Ming Horng

Department of Chemistry, National Taiwan Normal University,

Taipei, Taiwan 117, ROC, and Institute of Chemistry, Academia

Sinica, Nankang, Taipei, Taiwan 115, ROC.

Thirteen 4-aryl-2-picolines were synthesized by the reaction of a pyridine ring formation in yields up to 42%. Six of the picolines synthesized were new compounds.

Thiosemicarbazone of 4-(\underline{m} -aminophenyl)pyridine-2-carboxaldehyde (I) was reported to be the best antineoplastic agent of its series. Although the compound was prepared by reduction of 4-(\underline{m} -nitrophenyl)-2-picoline, the reaction of \underline{m} -nitrobenzenediazonium chloride with 2-picoline was reported to afford the starting nitro-compound in poor yield (4%). Subsequent improvement employed methylation of 4-phenylpyridine with methyllithium followed by nitration to afford 4-(\underline{m} -nitrophenyl)-2-picoline in 17% yield. 2

The present study was undertaken to prepare, by general pyridine ring formation, 3 , 4 various 4-aryl-2-picolines which are needed to synthesize a variety of pyridineal dehydes of type I for biological evaluation.

The pyridinium salt (0.1 mole) obtained from bromoacetone and pyridine was allowed to react with substituted cinnamaldehydes ^{5,6} (0.1 mole) and ammonium acetate (1.3 mole) in acetic acid (100 ml) at 120° or at reflux (128°) for 5 hours. The reaction mixture was evaporated to about half of its original volume, diluted with 200 ml of water, and extracted with ether (5 x 100 ml). Usual workup gave a material which was purified by either recrystallization, chromatography on silica gel, or distillation in vaccum. Thirteen 4-aryl-2-picolines were thus obtained in yields up to 42% (Table I). Six of the picolines synthesized are new compounds. The NMR data of these picolines are collected in Table II.

Of thirteen substituted cinnamaldehydes prepared, <u>m</u>-methylcinnamaldehyde is a new compound obtained in 55% yield: bp $132-134^{\circ}$ (9 mmHg); m/e, (M[†]) 146; NMR, 2.25(s, 3H), 6.53(q, 1H), 7.06-7.56(m, 5H), 9.56 (d, 1H); semicarbazone mp $211.5-213^{\circ}$ (satisfactory elemental analysis).

Table I Physical Data, Yields, and Picrates of 4-Aryl-2-picolines(A)

cpd	z	%	yield	mp ^O C observed	(bp/mmHg) literature	mass spectra (M ⁺)	mp of picrate ^a
1	Н		26	(129-131/3)	(102-103/0.2) ²	169	
2	o-NO ₂		32	70.5-71	69-70 ²	214	
3	m-NO ₂		37	156-157	155 - 156 ¹	214	
4	p-NO ₂		34.5	156.5-157.5	156 -1 57 ²	214	
5	o-Br		22.5	(181/8)	new cpd	247	166-167.5(dec)
6	m-Br		17.6	(172-174/8)	new cpd	247	240-241(dec)
7	p-Br		42	74.5-76	75-76.2 ⁷	247	
8	o-C1		34.3	(150-152/6)	new cpd	203	171-171.8(dec)
9	m-Cl		18.5	(158-159/8) 39-40	39-428	203	
10	p-C1		41.2	70.5-71.5	69-729	203	
11	o-CH ₃		18	(150-153/11)	new cpd	183	161.5-162(dec)
12	m-CH ₃		15	(150/7)	new cpd	183	236.5-237(dec)
13	p-CH ₃		17.7	(140-142/8)	new cpd	183	213-214(dec)

a. These picrates gave satisfactory elemental analysis.

<u>Table II</u> NMR Data of 4-Aryl-2-picolines(A)^a

cpd		pyridine ring Me(s, 3H)	phenyl ring Me(s, 3H)	_	pyridine ring H-6(dd, 1H)		
- II -						^J 5,6	3,6
1	Н	2.59		7.26-7.73	8.63	5.2	1
_	- 210	0.42		(m, 7H)	8.78	5	1
2	0-1102	2.63		7.13-7.28 (m, 2H)	0.70	5	1
				7.45-7.95			
				(m, 3H)			
				8.00-8.20			
	***	0.50		(m, 1H)	0 776		-
3	m-NO ₂	2.70		7.43-8.67 (m, 6H)	8.76	5	1
4	p-NO	2.70		7.40-7.50	8.80	5	1
-	P 2	2		(m, 2H)			
				7.80-8.60			
_		0.57		(q, 4H)	0 54	_	
5	o-gr	2.57		7.00-7.33 (m, 5H)	8.54	5	1
				7.65			
				(m, 1H)			
6	m-Br	2.60		7.15-7.80	8.62	5	1
_	_	0.55		(m, 6H)	0	_	
7	p-Br	2.53		7.13-7.70 (m, 6H)	8.53	5	1
8	o-C1	2.62		7.15-7.60	8.65	5	1
_				(m, 6H)		_	
9	m-C1	2.63	•	7.27-7.73	8.73	5	1
•				(m, 6H)		_	
10	p-Cl	2.56		7.21	8.53	5	1
				(m, 2H) 7.47			
				(m, 4H)			
11	o-CH ₂	2.55	2.18	6.94-7.33	8.50	5	1
	_	,	0.44	(m, 6H)		_	
12	m-CH ₃	3 2.57	2.41	7.15-7.44 (m, 6H)	8.50	5	1
13	p-CH ₂	2.56	2.35	(m, on) 7.15-7.63	8.60	5	1
1.7	P-0113	3	2.00	(m, 6H)	0.00	_	^

a. Recorded for ${\rm CDCl}_3$ solution on a JEOL C-60-HL High Resolution NMR Instrument. The chemical shifts are in ppm downfield from internal TMS. J's are in Hz.

REFERENCES

- K. C. Agrawal, A. J. Lin, B. A. Booth, J. R. Wheaton, and A. C. Sartorelli, J. Med. Chem., 17, 631 (1974).
- K. C. Agrawal, B. A. Booth, S. M. DeNuzzo, and A. C. Sartorelli,
 J. Med. Chem., 18, 368 (1975).
- 3. W. Zecher and F. Krohnke, Chem. Ber., 94, 698 (1961).
- 4. F. Krohnke, Synthesis, 1 (1976).
- G. Cignarella, E. Occelli, and E. Testa, J. Med. Chem., <u>8</u>, 326 (1965).
- R. E. Buckles and M. P. Bellis, Org. Syn., Coll. Vol. IV, 722
 (1963).
- 7. L. F. Lin, S. J. Lee, and C. T. Chen, Institute of Chemistry, Academia Sinica, ROC, to be published.
- 8. C. T. Chen, S. F. Chen, and S. J. Lee, Bull. Inst. Chem., Academia Sinica, No. 24, 53 (1977).
- P. Doyl and G. J. Stacey, Brit. 1147068 (Cl. c07d), O2 Apr 1969,
 Appl. O2 Dec 1966; Chem. Abstr., 71, 38813w (1969).

ACKNOWLEDGMENT

We thank National Science Council for a grant-in-aid.

Received, 1st July, 1977