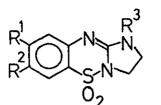

DIHYDROIMIDAZOBENZOTHIADIAZINE DIOXIDES

R<u>ichard</u> F<u>riary</u> * and E<u>lijah</u> H. G<u>old</u> Chemical Research, Schering Corporation, Bloomfield, New Jersey 07003, U.S.A.

Reductive cyclization of 2-methylthio-1-(2-nitrobenzenesulfonyl)-4,5-dihydroimidazolides gave a series of $1\underline{H}$ -2,3-dihydroimidazo-[1,2-b][1,2,4]benzothiadiazine 5,5-dioxides, three of which were isomerized by potassium iodide to $3\underline{H}$ -1,2-dihydroimidazo[2,1-c][1,2,4]benzothiadiazine 5,5-dioxides.


A variety of heteropolycyclic compounds whose structures embody a guanidine group has been reported to lower blood pressure;¹ among these are 3-alkylamino[1,2,4]benzothiadiazine 1,1-dioxides ($\underline{e}.\underline{g}.,\underline{1}$) and tetrahydroimidazo[2,1-b]quinazolines ($\underline{e}.\underline{g}.,\underline{2}$).^{2,3}

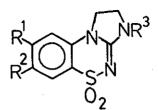

Dedicated to Professor R.B. Woodward for the sixtieth anniversary of his birthday. Prompted by an interest in hypertensive therapy, we have prepared two series (Tables 1 and 2) of compounds in one of which the sulfonyl group of the former $(\underline{1})$ is embedded in the tricyclic array of the latter $(\underline{2})$.

Table 1. 1<u>H</u>-2,3-Dihydroimidazo[1,2-b][1,2,4]benzothiadiazine 5,5-Dioxides. 4

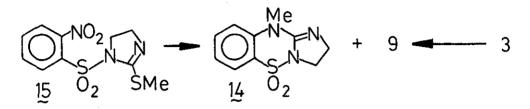
No.	Substituents			Mp (⁰ C)
	1		<u>R</u> 3	
3	н	н	н	256-7
<u>4</u>	H ₂ N	Н	Н	278-9
<u>5</u>	MeO	Н	Н	313-6
<u>6</u>	Me0	MeO	Н	290-1
Z	н	NO2	Н	304-7
<u>8</u>	Cl	Cl	H	310-3
2	Н	H	Me	134-6

Table 2. <u>3H</u>-1,2-Dihydroimidazo[2,1-c][1,2,4]benzothiadiazine 5,5-Dioxides. ⁴

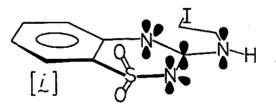
No.	Substituents			Mp (^o C)
	R ¹	2	<u>R</u> 3	
<u>10</u>	H	н	Н	342-9
<u>11</u>	H	H	Me	297-8
<u>12</u>	Cl	Cl	Ac	320-5
<u>13</u>	Н	Н	Ac	300-5

The availability ⁵ and the structures of 2-nitrobenzenesulfonyl chlorides suggested combination of them with 2-methylthio-2-imidazoline, reduction of the nitro group of the resulting nitrobenzenesulfonyl-dihydroimidazolides, and cyclization to the tricyclic compounds by elimination of methanethiol from the expected aminobenzenesulfonyl-dihydroimidazolides. Certain nitrobenzenesulfonyl-dihydroimidazolides were prepared, and, as expected, underwent reductive cyclization (SnCl₂, HCl;⁶ HOAc, MeOH).

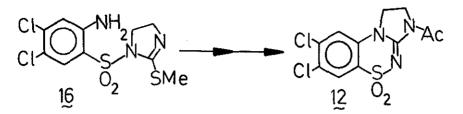
> Table 3. Preparation of 1<u>H</u>-2,3-Dihydroimidazo-[1,2-b][1,2,4]benzothiadiazine 5,5-Dioxides.

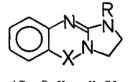

R^{1} 2 R^{2}	Ô	NO ₂ S-N O ₂	SMe		$ \begin{array}{c} $
	Starting Material 4		Product	Yield (%)	
	1	2	Mp (⁰ C)		
	н	H	185-6	<u>3</u>	92
	NO2	н	168-9	<u>4</u>	52
	MeÕ	Н	110-3	<u>5</u>	83
	MeO	MeO	171-2	<u>6</u>	71

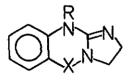
Reactions of methylthioimidazoline with 2-amino-5-nitrobenzenesulfonyl chloride, ⁷ and with 2-amino-4,5-dichlorobenzenesulfonyl chloride, ⁸ gave the corresponding aminobenzenesulfonyldihydroimidazolides. ⁹ Methanolic acetic acid converted these to 7 (59%) and 8 (74%), respectively.


Although compounds 3-8 behaved (mp, tlc, nmr) as single substances, they may be tautomeric, and therefore both N-methyl isomers of 3 were prepared for comparison. Methylation (NaH, DMF,

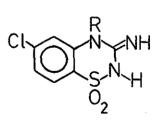
(767)


MeI) of 3 gave 60% of 9 and 14, mp 132-3°, ⁴ in a ratio of 20:1. Both isomers (9, 3%; 14, 1%) could also be obtained by treatment of 15 with trimethyl phosphite. Reaction of the anion of 3 and trimethyl phosphate, formed by initial deoxygenation (ArNO₂ \rightarrow ArNO), may account for the observed methylations. ¹⁰


Inspection of the structure of <u>3</u> suggested that, if the bond between C-3 and N-4 could be broken by a nucleophile, re-closure of the ambident anion [i] might yield the isomer <u>10</u>. When <u>3</u> was heated with potassium iodide in hexamethylphosphoric triamide (HM PA) at 200[°], <u>10</u> was obtained in a yield of 86%. To confirm the structural assignments, <u>10</u> was methylated (NaH, DMF, MeI) to <u>11</u> (88%), and <u>9</u> was rearranged (75%) with iodide (HMPA, 200[°]) to the same (tlc, ir, nmr) product (<u>11</u>).


Cyclization (Ac₂0, Py, CHCl₃) of crude 2-methylthio-1-(2amino-4,5-dichlorobenzenesulfonyl)-4,5-dihydroimidazolide (<u>16</u>) ⁹ gave (73%) an N-acetyldihydroimidazo[1,2-b][1,2,4]benzothiadiazine dioxide, mp 221-4°, ⁴,11 which was isomerized with iodide in dimethylacetamide at 166° to <u>12</u> (88%). For comparison, <u>10</u> was acetylated (Ac,0, Py) to 13 (86%).

The assignments of structures to 3-9 and 14 are based on comparisons of their uv spectra and of their nmr spectra with those of model compounds, 17-20. ³ The similarities of the uv spectra and chemical shifts of the C-2 and C-3 protons imply that, in solution, 3 ¹³ and 9 ¹⁴ are structurally alike. The similar chemical shifts of 14 ¹⁵ and 18, which (18) was prepared unambiguously, ³ show they are related as illustrated. The downfield shift ($\nabla \delta = +0.54$ ppm) of the N-methyl group of 14 contrasted to that of 9 allows assignment of their structures and those of 3-8 as shown. Deshielding of a nearby methyl group, planar with a benzene ring, can also be observed in 20 contrasted to 19. ³



<u>17;</u> R=H, X=CO <u>19</u>; R=Me, X=CH₂

<u>18;</u> R=Me, X=CO <u>20</u>; R=Me, X=CH₂

<u>No.</u> 21	<u>г</u> 1 н	<u>R²</u> Me	<u>R³</u> Me
22	Me	Me	Me
<u>23</u>	Ac	Me	Me
<u>24</u>	Ac	Ph	Н
<u>25</u>	Ac	Ph	Me

 $\frac{26}{27}$, R=H

The structures of <u>10-13</u>¹⁶ were established by comparisons of their uv spectra with those of models <u>21-23</u>.¹⁷ The results of methylation of <u>26</u> (\rightarrow <u>27</u>, <u>21</u>, and <u>22</u>), and of methylation of <u>24</u> (\rightarrow <u>25</u>), suggest that alkylation at sulfonyl-bound nitrogen is disfavored in such systems; in this sense, these results precedent the outcomes of methylation of <u>10</u> and of the rearrangements observed in the present work. ^{17,18}

ACKNOWLEDGEMENT

We thank the staff of Analytical Research Services of Schering Corporation for microanalyses, ir, nmr, uv, and mass spectra; we are grateful to Professor Sir D.H.R. Barton for suggesting the rearrangement of 3 to $\underline{10}$.

REFERENCES AND NOTES

1 R.P. Mull and R.A. Maxwell, 'Antihypertensive Agents,' ed. E. Schlittler, Academic Press, New York, 1967, p. 114.

2 L. Raffa, M. Di Bella, P. Ferrari, and M. Rinaldi, <u>Il Farma-</u> co (Sci.), 1974, <u>29</u>, 417.

3 T. Jen, B. Dienel, H. Bowman, J. Petta, A. Helt, and B. Loev, J. Med. Chem., 1972, <u>15</u>, 727.

4 Each new compound for which a mp is reported gave acceptable $(\pm 0.4\%)$ microanalytical values and showed the expected value of m/e for M^+ in its medium-resolution mass spectrum.

5 J.G. Topliss, M.H. Sherlock, H. Reimann, L.M. Konzelman, E.P. Shapiro, B.W. Pettersen, H. Schneider, and N. Sperber, <u>J. Med.</u> Chem., 1963, 6, 122.

6 R.B. Woodward, Org. Syn., Coll. Vol. III, ed. E.C. Horning, John Wiley & Sons, Inc., New York, 1955, p. 453.

7 J.R. Bartels-Keith and R.W. Cieciuch, <u>Can. J. Chem.</u>, 1963, <u>46</u>, 2593.

8 J.H. Short and U. Biermacher, J. Am. Chem. Soc., 1960, 82,

1135.

9 These intermediates were not characterized, but were cyclized without purification.

10 J.I.G. Cadogan, <u>Quart. Rev.</u>, 1968, <u>22</u>, 2.

11 Because of a lack of unequivocal models, ¹² the structure of this derivative could not be assigned by ordinary spectral measurements.

12 The N-1 acetyl structure of the product of acetylation of $1\underline{H}$ -1,2,3,5-tetrahydroimidazo[2,1-b]quinazolin-5-one may be correct, but its assignment resulted from misinterpretation of a differential chemical shift. ³ The $\nabla \delta$ -value of 0.4ppm (CDCl₃), attributed to anisotropy of the acetyl carbonyl, ³ may be calculated from the data of Ref. 3 on the premiss of additivity of substituent effects.

13 λ_{max} (EtOH) 265 (4.25), 306 (3.74)nm; δ (DMSO) 3.62 (m, 2H₂), 4.08 (m, 2H₃)ppm.

14 λ_{\max} (EtOH) 270 (4.43), 307 (3.94)nm; δ (DMSO) 2.95 (s, NCH₃), 3.59 (m, 2H₂), 4.02 (m, 2H₃); (CDCl₃) 2.99, 3.48, 4.02ppm. 15 λ_{\max} (EtOH) 260 (4.36), 301 (3.57)nm; δ (DMSO) 3.52 (s, NCH₃), 3.88 (s, 2H₂ and 2H₃); (CDCl₃) 3.53, 3.98 (s, 2H₂ and 2H₃)ppm.

16 λ_{\max} (MeOH) :: <u>10</u> : 250 (4.09), 290 (3.28); <u>11</u> : 253 (4.17), 292 (3.28); <u>12</u> : 272 (4.08); <u>13</u> : 264 (3.16)rm.

17 J.G. Topliss and L.M. Konzelman, <u>J. Org. Chem.</u>, 1963, <u>28</u>, 2313.
18 Compounds <u>3-14</u> were devoid of hypotensive activity.

Received, 29th August, 1977