THE ABSORPTION AND THE EMISSION SPECTRA OF SOME SUBSTITUTED 3-PHENYLCOUMARINS $^{\boldsymbol{\tau}}$

C. Y. Chen* and T. E. Gompf

Research Laboratories, Eastman Kodak Company, Rochester, New York 14650, U.S.A.

> Additive substituent rules are described which correlate the absorption and the emission maxima, λ_{max} and E_{max} , of 3-phenylcoumarins substituted at 7- and 4'-positions. For these compounds, the correlation between transition energies calculated from simple Hückel Molecular Orbital (HMO) treatment and the observed E_{max} values is better than that for the observed λ_{max} values.

Coumarins (I), either naturally occurring or man-made, are highly fluorescent materials and have been widely used as optical

 (I)

 $⁺$ Dedicated to Professor R. B. Woodward on his 60th birthday.</sup>

brighteners^{la} especially for wool, synthetic fabrics, and plastics. Lately, this class of compounds has also shown some promise as laser dyes. lb

We are, therefore, interested in correlating the spectral properties of these compounds with structural variations. Here we present evidence that both the absorption and the emission maxima $(\lambda_{max}$ and $E_{max})$ of 7- and/or 4'-substituted 3-phenylcoumarins (11) can be correlated by means of simple, additive

 (i)

substituent rules, and these empirical rules can be used to predict the λ_{max} and E_{max} of a given compound of this class within experimental error.

The observed λ_{max} and E_{max} values² in ethanol for some monosubstituted 3-phenylcoumarins (11) are given in Table I.

Table I. The λ_{max} and E_{max} Values (in nm) of Some Monosubstituted 3-Phenylcoumarins (11) in Ethanol

The substituent constants $(\Delta\lambda_{\text{max}}$ and $\Delta E_{\text{max}})$, defined as follows for the monosubstituted compounds,

 λ_{max} (sub.) = 325 nm + $\Delta\lambda_{\text{max}}$ (sub.) (1)

 (935)

$$
E_{max} (sub.) = 417 nm + \Delta E_{max} (sub.)
$$
 (2)

are given in Table 11.

Table II. The Substituent Constants, $\Delta\lambda_{\text{max}}$ and ΔE_{max} (in nm) **of Some Monosubstituted 3-Phenylcoumarins (11) in Ethanol**

For 7-Substituents

For 4'-Substituents

 $^{\circ}$ (936)

If the substituent effects are indeed additive, then we have for 7- and 4'-disubstituted 3-phenylcoumarins (II)

$$
\lambda_{\text{max}} = 325 + \sum \Delta \lambda_{\text{max}} \quad (\text{nm}) \tag{3}
$$

and
$$
E_{\text{max}} = 417 + \sum \Delta E_{\text{max}} \text{ (nm)}
$$
 (4)

where $\Delta\lambda_{max}$ and ΔE_{max} are the substituent constants defined by equations (1) and (2) and given in Table I1 and the summation is over both 7- and 4'-positions. Table I11 gives the differences between λ_{max} and E_{max} for calculated and observed values for seventeen 7- and 4'-disubstituted 3-phenylcoumarins (II).

Table **III.** Differences in Calculated and Observed λ_{max} and

 E_{max} for 14 Disubstituted 3-Phenylcoumarins in Ethanol

Apart from compounds 21 and $22³$ there is a good agreement between observed and calculated λ_{max} and E_{max} values, and in most cases the deviations are less than twice that of our precision of measurement. Such additive substituent effects

 a_{Defined} as observed - calculated.

b_{No fluorescence from these two compounds.}

in λ_{max} are not entirely unexpected. For example, the Woodward additivity rules for diene absorption⁴ are well-known and have proven to be invaluable in the study of the uv spectra of dienes and steroids; also, studies of a number of disubstituted acetophenones⁵ showed that additivity apparently is not limited to dienes. Since fluorescence spectra usually exhibit a mirrorimage relationship⁶ to absorption spectra, additivity in E_{max} should also be anticipated provided that the differences in Stokes shifts are small for compounds under consideration. Nevertheless, we believe that this is the first time such an additivity in E_{max} has been treated explicitly.

Although correlation between observed spectral data and calculated HUckel transition energies cannot be regarded as a quantum chemical justification of the additivity rules, we have correlated observed λ_{max} and E_{max} values for 26 mono- or disubstituted 3-phenylcoumarins **(11)** with transition energies obtained from Huckel Molecular Orbital (HMO) calculations.⁷ As can be seen from Figure 1, the correlation between λ_{\max} and calculated HUckel transition energies is only fair (correlation coefficient = 0.71 and standard deviation = 747.60 cm^{-1}). When the E_{max} values are plotted in the same manner, good correlation is obtained (correlation coefficient $= 0.90$, standard deviation $=$ 371.18 cm⁻¹). We have no explanation for the better correlation with E_{max} than λ_{max} . We also measured (in carbon tetrachloride) the λ_{max} and the E_{max} of 16 of the 26 compounds listed in Figures 1 and 2 (selection of the compounds was based on solubility in cCl_4) and again correlated them with the calculated HUckel transition energies. The results are given in Figures 3

 (939)

and 4. The correlation is once again not as good with λ_{max} (correlation coefficient = 0.563 and standard deviation = 586.49 cm⁻¹) as with E_{max} (correlation coefficient = 0.6454 and standard deviation = 417.07 cm⁻¹). For the same set of compounds with λ_{max} and E_{max} measured in EtOH (part of the data from Figs. 1 and 2), correlation coefficient = 0.495 and standard deviation = 844.35 cm⁻¹ for correlation with λ_{max} , and correlation coefficient = 0.866 and standard deviation = 394.47 cm⁻¹ with E_{max} . Despite the fact that the good correlation with E_{max} in EtOH (correlation coefficient = 0.90 with standard deviation = 371.18 cm⁻¹) enables us to predict⁸ E_{max} for this particular series of compounds to within **25** nm (experimental error) with at least 90% confidence, we think such a correlation may be simply fortuitous. We have also found that even though additivity rules (with a different set of substituent constants than those given in Table II) apply⁹ to substituted bisbenzoxazoylstilbenes (III), another class of important optical brighteners, the correlations obtained from 3-phenylcoumarins cannot be applied there.

 (III)

ACKNOWLEDGEMENT We thank L. Costa for measuring all the absorption and the emission data reported here.

Figure 2. Correlation between E_{max} observed in EtOH and

FIGURE 3

 (943)

HETEROCYCLES, Vol **Z** No. **2,** 1977

REFERENCES

1 a) Kirk-Othmer, "Encyclopedia of Chemical Technology", 2nd ed., Vol. 3, Wiley (Interscience), New York, 1964, p. 737; b) K. H. Drexhage, J. Research NBS, 1976, 80A, 421. 2 Absorption spectra were recorded with a Cary 14 spectrometer. The solutions used had concentrations of 10^{-4} and 10^{-5} M. Within this range, the λ_{max} and E_{max} recorded were independent of the concentration. Emission spectra were measured with an instrument described by Costa et al. [L. Costa, F. Grum, and D. J. Paine, Appl. Opt., 1969, **3,** 11491. The precision of measurement is ± 5 nm for E_{max} and ± 3 nm for λ_{max} . 3 Severe solvent effects might not only quench the fluorescence but also perturb the λ_{max} ; see D. L. Horrocks, J. Chem. Phys., 1969, **5_0,** 4151. R. B. Woodward, J. Am. Chem. Soc., 1942, 64, 72; L. F. Fieser

and M. Fieser, "Steroids", Reinhold, New York, 1959, p. 15-25. 5 W. A. Seth-Paul and J. Vermylen-de Winter, J. Mol. Structure, 1969, 4, 303.

6 E. L. Wehry and L. B. Rogers, "Fluorescence and Phosphorescence Analysis", D. M. Hercules, ed., Interscience, New York, 1966, p. 98. 7 A. Streitwisser, Jr., "Molecular Orbital Theory for Organic Chemists", John Wiley and Sons, Inc., New York, 1961; all the parameters were taken from A. J. Wohl, Tetrahedron, 1968, 29, 6889. **8** J. D. Hinchen, "Practical Statistics for Chemical Research", Muehuen and Co., Ltd., London, 1969.

9 C. Y. Chen, unpublished data.

Received, 28th September, 1977

 (945)