THE ROLE OF ISOVINCOSIDE (STRICTOSIDINE) IN THE BIOSYNTHESIS OF THE INDOLE ALKALOIDS

<u>A. I. Scott*</u>, <u>S. L. Lee, P. de Capite</u> and <u>M. G. Culver</u> <u>Department of Chemistry, Texas A&M University</u> <u>College Station, Texas 77843</u> and <u>C. R. Hutchinson</u> <u>School of Pharmacy, University of Wisconsin</u> <u>Madison, Wisconsin 53706</u>

For the last decade it has been assumed¹ that the obligatory precursor for the indole alkaloids of monoterpene derivation is vincoside, the $3\beta(R)$ epimer (1) which during conversion to members of the <u>Corynanthé</u>, <u>Aspidosperma</u> and <u>Iboga</u> series in whole plant feeding experiments suffers inversion of the 3β stereochemistry <u>with retention of hydrogen</u>.² The situation had been rendered more complex by the revision of the original stereochemistry from $3\alpha(S)(2)$ to that of the $3\beta(R)$ diastereomer (<u>1</u>).^{3,4,5} Meanwhile the absolute stereochemistry (<u>1</u>) of vincoside was confirmed by X-ray diffraction.⁶ Since no bioconversion of the 3α -isomer (<u>2</u>) to the more complex alkaloids could be observed¹ in differentiated <u>Catharanthus roseus</u> plants, the assumption was made that vincoside represents the pivotal intermediate for the three major classes of indole alkaloids in Nature.

With the advent of a cell-free system from <u>C. roseus</u> callus⁷ the problem could be reinvestigated <u>in vitro</u>. We have found that incubation, with the previously described system, of synthetic samples of $[5-^{14}C, 14-^{3}H]$ -vincoside (<u>1</u>) and isovincoside (<u>2</u>) under identical conditions (See Table 1) reveals that the <u>Corynanthé</u> alkaloids ajmalicine (<u>3</u>), 19-epi-ajmalicine (<u>4</u>) and tetrahydroalstonine (<u>5</u>) are formed exclusively from isovincoside (=Strictosidine⁴ <u>2</u>) and

(979)

(980)

HETEROCYCLES, Vol. 7, No. 2, 1977

that no radioactivity can be detected when vincoside $(\underline{1})$ is used as a potential precursor.

In order to compare these results with previous experiments in whole plants, the experiments were repeated with $[5-^{14}C, 14-^{3}H]$, $(\underline{1}) \& (\underline{2})$ in aqueous solution feedings to 18 day old <u>C. roseus</u> shoots. The results of these experiments (Table 2) leave no doubt that isovincoside (\underline{2}) is indeed the precursor of the TABLE 1

Cell-free Conversion of Isovincoside/Vincoside <u>C. roseus</u> Alkaloids

	Ajmalicine	19-epiajmalicine	tetrahydroalstonine _
Isovincoside*			
(T/C = 13.3)	T/C = 12.8	T/C = 13.3	T/C = 13.2
	% incorp. = 4.9	% incorp. ≈ 1.3	% incorp. = 1.2
Vincoside**	***		
(T/C = 11.06)			

* Sp. act. of $[5-^{14}C, 14-^{3}H]$ isovincoside = 1.330mCi of $^{3}H/0.10$ mCi of $^{14}C/mmole$, ** Sp. act. of $[5-^{14}C, 14-^{3}H]$ vincoside = 2.72 mCi of H/0.246 mCi of $^{14}C/mmole$, *** Background counts only.

Incubation contained 1.75 mg protein (from callus 11 days after transfer), 1 mg of doubly labeled isovincoside or vincoside, 3 mg NADPH in a total volume of 7 ml of 0.1 M sodium phosphate buffer at pH 7.0 containing 10 mM 2-mercaptoethanol. Incubations were carried out at 34°C for 2 hrs.

major alkaloids ajmalicine $(\underline{3})$, vindoline $(\underline{6})$ and catharanthine $(\underline{7})$, representing the <u>Corynanthé</u>, <u>Aspidosperma</u>, and <u>Iboga</u> families respectively, and that with both cell-free and whole plant systems <u>vincoside</u> $(\underline{1})$ <u>is not metabolized to the</u> <u>natural alkaloids of C. roseus</u>. While this work was in progress similar results

7 CATHARANTHINE

8 Ipecoside

I

TABLE 2

Feeding of Isovincoside/Vincoside to 3-Week Old <u>C. roseus</u> Seedlings

		·	
Isovincoside*			
(T/C = 13.3)	T/C = 13.3	T/C = 14.1	T/C = 14.1
	% incorp. = 0.149	% incorp. = 0.247	% incorp. = 0.486
Vincoside**			
(T/C = 11.06)	***		
			³ H/0.10mCi of ¹⁴ C/mmol 0.246 mCi of ¹⁴ C/mmole
	punts only. $+T/C = 3$		
Three-week-old se	eedlings were fed wit	h either vincoside (1	/C = 1.358 x 10 ⁷ dpm/
1.425 x 10 ⁶ dpm) d	or isovincoside (T/C	= 4.096 x 10 ⁶ dpm/8.81	x 10 ⁴ dpm) for 36 hrs.
Uptake of radioad	ctivity was 35% in bo	th cases.	

using single labeled vincoside and doubly labeled isovincoside were obtained by Stöckigt and Zenk⁸ who have also shown that isovincoside (2) accumulates in a cell-free system when alkaloid synthesis is inhibited by δ -gluconolactone. The revision of the stereochemistry of the central intermediate of indole alkaloid synthesis in <u>Apocyanaceae spp.</u>, confirmed independently and simultaneously by differently labeled substrates, brings into line the bio-intermediacy of (2) in the formation of camptothecin⁹ and also suggests evaluation of the role of ipecoside (8) in the biosynthesis of the <u>Ipecac</u> alkaloids¹⁰ such as emetine (9) at the cell free level, in order to avoid incorporation problems associated with whole plant feeding experiments.

Acknowledgment: We thank N.I.H. (Grant CA22436-02) for support of this work.

REFERENCES

- 1. A. R. Battersby, A. R. Burnett, and P. G. Parsons, <u>J. Chem. Soc. (C)</u> 1969, 1193.
- 2. A. R. Battersby and K. H. Gibson, J.C.S. Chem. Comm. 1971, 902.
- 3. A. R. Battersby, A. R. Burnett, E. S. Hall and P. G. Parsons, <u>J.C.S.</u> Chem. <u>Comm.</u> 1968, 1582.
- 4. K. T. Desilva, G. N. Smith, and K. E. H. Wassen, <u>J.C.S. Chem. Comm.</u> 1971, 905.
- O. Kennard, P. J. Roberts, N. W. Isaacs, F. H. Allen, W. D. S. Motherwell, K. H. Gibson, A. R. Battersby, <u>J.C.S. Chem. Comm.</u> 1971, 899.
- 6. K. C. Mattes, C. R. Hutchinson, J. P. Springer and J. Clardy, <u>J. Amer.</u> Chem. Soc. 1975, <u>97</u>, 6270.
- 7. A. I. Scott, and S. L. Lee, <u>J. Amer. Chem. Soc.</u> 1975, <u>97</u>, 6906.
- J. Stockigt and M. H. Zenk, <u>FEBS Lett.</u>, 1977, <u>79</u>, 233; idem <u>J.C.S.Chem.Comm</u>. 1977,646.
- C. R. Hutchinson, A. H. Heckendorf. P.E. Doddona, E. Hagaman, and E. Wenkert, J. Amer. Chem. Soc. 1974, <u>96</u>, 5609.
- 10. A. R. Battersby and R. J. Parry, <u>J.C.S. Chem. Comm.</u>, 1971, 901.

Received, 7th October, 1977