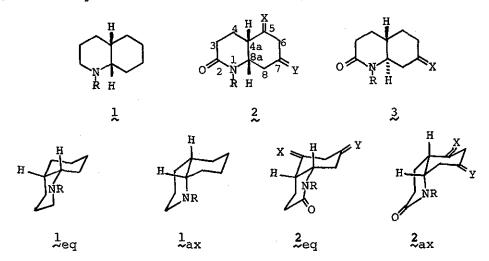
CONFORMATIONAL EQUILIBRIUM IN <u>cis</u>-OCTAHYDROCARBOSTYRILS

Takefumi Momose, * Tatsuo Miyata, and Takeshi Imanishi Faculty of Pharmaceutical Sciences, Osaka University


Yamada-kami, Suita, Osaka 565, Japan

The proton magnetic resonance (¹H-NMR) studies on N-substituted <u>cis</u>-octahydrocarbostyrils have revealed a preference of the conformer (2_{eq}) for the substituent methyl or benzyl and of the conformer (2_{ax}) for the N-hydrogen compound. The positions of conformational equilibrium [$2_{eq} \rightleftharpoons 2_{ax}$] in several other <u>cis</u>-octahydrocarbostyrils are also described.

Conformational studies on saturated heterocycles are in the foreground of recent researches.¹ Especially, Booth and coworkers² have widely examined the conformational analysis for equilibrium in a series of <u>cis</u>-decahydroquinolines, $l[l_{eq} \leftarrow l_{ax}]$, demonstrating that the conformer (l_{ax}) is the predominant one for R=H or Me while the conformer (l_{eq}) is preferred for R= CD₂CH₃ or CD₂CF₃.^{2b} In the present communication we describe the conformational analysis for equilibrium in some <u>cis</u>-octa-hydrocarbostyrils, $2[2_{eq} \leftarrow 2_{ax}]$, by use of the ¹H-NMR signal of

-17-

their C-8a protons recorded at room temperature.

The C-8a proton signals for <u>cis</u>-octahydrocarbostyril derivatives (2a-2q), as summarized in Table I, appear in the downfield region with good separation from those of other ring protons.³ The values of chemical shifts (δ <u>ca</u>. 3.2 ppm) and half-height width ($W_{1/2}$) (<u>ca</u>. 25 Hz) for the <u>trans</u> analogues (3: R=H, benzyl; X=0, ketal)⁴ are almost constant while those for the <u>cis</u>-lactams (2) are widely varied depending on the conformational equilibrium in respective <u>cis</u>-lactams. Since the chemical shifts are affected not only by conformational circumstances but also by ring substituents, they are not suitable for diagnosis of the conformational equilibrium in substituted <u>cis</u>-octahydrocarbostyrils. On the other hand, values of $W_{1/2}$, or in other words splitting patterns, would be affected only by the position of conformational equilibria and therefore be utilizable to determine the position of the equilibrium.

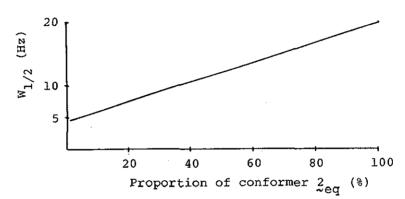
If the $W_{1/2}$ values for the conformers $(2_{eq} \text{ and } 2_{ax})$ are

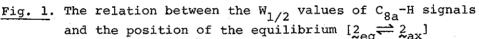
-18-

 $^{W}_{\rm 1/2\,(eq)}$ and $^{W}_{\rm 1/2\,(ax)},$ respectively, then the observed value of $^{W}_{\rm 1/2}$ will be

$$W_{1/2}$$
 (observed) = $N_{eq} \cdot W_{1/2}(eq) + N_{ax} \cdot W_{1/2}(ax)$ (1)⁵

<u>Table I</u>. The C_{8a} -H signals in the ¹H-NMR spectra of <u>cis</u>-octa-


Compounds	R	х	Y	Chemical shifts (δ)	W _{1/2} (Hz)
2a	Н	^н 2	^Н 2	3.49	8.0*1
<u>2</u> ь	Me	н ₂	н ₂	3.18	17.5
2°	^{СН} 2 ^С 6 ^Н 5	н ₂	н Н2	3.16	18.0
2ª	н	0	н ₂	4.06	9.5 ^{*1}
2e	Me	0	н ₂	3.65	15.5
2£	^{Сн} 2 ^С 6 ^Н 5	0	н ₂	3.40	17.5
2 9	н	<°]	н ₂	3.59	15.5*1
2h	Me	<°]	^н 2	3.42	17.5
2i	^{Сн} 2 ^С 6 ^Н 5	<°⊒	^H 2	3.46	19.5
2 j	н	^H 2	0	3.96	8.0 ^{*1}
2k	сн ₂ с ₆ н ₅	н ₂	0	3.57	20.0
21	H	^Н 2	<₀ ^o]	3.67	16.0 ^{*1}
2m	^{CH} 2 ^C 6 ^H 5	^H 2	<°⊒	3.48	19.5 ^{*2}
2n ≈	Me	< ^{OAC} H	^н 2	3.22	18.0
20	Me	$\zeta_{\rm H}^{\rm OH}$	^н 2	3.20	18.0
2p	COPr ⁿ	^H 2	^H 2	4.37	19.0
2्व	CH2CH=CH2		<	3.52	19.5


hydrocarbostyrils (at 90 MHz, in CDCl₃, 35°C)

*1 The value on irradiation at NH signal.

*2 The value of the width between outer lines.

where N_{eq} and N_{ax} are the mole fractions of the conformers $(2_{eq} \text{ and } 2_{ax})$, respectively. The values of $W_{1/2(eq)}$ and $W_{1/2(ax)}$ could be given as 20 and 4.5 Hz from the C-8a proton signals for the corresponding conformers $(2_{eq} \text{ and } 2_{ax})$, respectively, in the 1_{H-NMR} of N-methyl-cis-octahydrocarbostyril (2b) measured at -61°C. The relation between the observed $W_{1/2}$ and the position of conformational equilibrium is also shown in Fig. 1. Low temperature 1_{H-NMR} measurements for 2a and 2b, where the exact

<u>Table II</u>. The position of conformational equilibrium in <u>cis</u>octahydrocarbostyrils using the equation (I) and low temperature ¹H-NMR spectra

Compounds	Propor	Proportion of conformer 2 (%)			
	calcd. from equation(I)	calcd. from low temp. NMR spectra			
2a	23	19 ^{*1}			
2ь	84	86 ^{*2}			
*1 The value	at -48°C. $\delta(C_{8a}-F_{1})$	I): 3.37 (for 2_{eq}) and			
3.55 (for 2 ax). *2 The value a	at -61°C. $\delta(C_{8a}^{-H}):$			
) and 3.52 (for 2_{ax}				

proportions of two conformers are given by determining the signal areas for the corresponding C-8a protons, demonstrate that the equation (I) is well applicable to the conformational analysis for equilibrium in <u>cis</u>-octahydrocarbostyrils (Table II).⁶

The results show a preference for conformer 2_{ax} when R=H⁷ and for conformer 2_{eq} when R=Me or benzyl. This tendency is some-

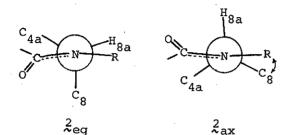


Fig. 2. Newman projections of

 2_{eq} and 2_{ax} for a view along the N-C_{8a} bond

what different from that for decahydroquinolines^{2b} and would be interpreted in terms of the severe repulsive interaction, between the N-substituent and the C-8 methylene in conformer 2_{ax}, derived

from the contribution of sp^2 character of the nitrogen valences (Fig. 2).

The position of the equilibrium in other <u>cis</u>-octahydrocarbostyrils (2c-2q) can also be estimated either from the equation (I) or from the slope of the $W_{1/2}$ <u>vs</u>. conformer proportion plots shown in Fig. 1.

From the above results, the $W_{1/2}$ values for the C_{8a} -H signals in ¹H-NMR of <u>cis</u>-octahydrocarbostyril derivatives measured at room temperature are found to be useful as a tool for conformational analysis concerning the equilibrium $[2_{eq} \rightleftharpoons 2_{ax}]$. Application of the method to configurational determination in other <u>cis</u>-octahydrocarbostyrils is in progress.

-21-

REFERENCES AND NOTES

- 1. a) G. Bernáth, G. Göndös, K. Kovács, and P. Sohár, <u>Tetra-hedron</u>, 1973, 29, 981; b) J.B. Lambert and S.I. Featherman, <u>Chem. Rev.</u>, 1975, 75, 611; c) E.L. Eliel and F.W. Vierhapper, <u>J. Am. Chem. Soc</u>., 1975, 97, 2424; d) F.W. Vierhapper and E.L. Eliel, <u>J. Org. Chem</u>., 1977, 42, 51; e) E.L. Eliel, C.-Y. Yen, and G.Z. Juaristi, <u>Tetrahedron Lett</u>., 1977, 2931.
- 2. a) H. Booth and A.H. Bostock, <u>J.C.S. Perkin II</u>, 1972, 615;
 b) H. Booth and D.V. Griffiths, <u>ibid</u>., 1975, 111; c) H. Booth,
 D.V. Griffiths, and M.L. Jozefowicz, <u>ibid</u>., 1976, 751.
- 3. The signals for <u>cis</u>-decahydroquinolines are found to be often masked with C-2 proton signals.^{2a}
- T. Momose, S. Uchida, M. Kinoshita, and T. Imanishi, <u>Chem</u>. <u>Pharm. Bull</u>., 1977, 25, 1797.
- A similar equation concerning the δ values is found in the literature: E.L. Eliel, <u>Chem. Ind. (London)</u>, 1959, 568.
- 6. The small deviation of the values calcd. from equation (I) from those based on the low temp. NMR spectra in Table II would be associated with the phenomenon that the contribution of minor conformers becomes smaller at lower temperature. Such a phenomenon has been described in many literatures: see, for example, ref. ld.
- 7. For 2g or 2l, conformer 2_{eq} is preferred because of an 1,3repulsive interaction between the ketal oxygen and the C_3-C_4 or $C_{8a}-N$ bond in conformer 2ax.

Received, 24th September, 1977

— 22 —