CYCLOADDITION REACTIONS OF 2,4-DIPHENYL-THIOPHENE AND 2,5-DIPHENYL-1,4-DITHIIN

Keiji Kobayashi and Kiyoshi Mutai Department of Chemistry, College of General Education University of Tokyo, Komaba, Meguro, Tokyo, 153

The reaction of 2,4-diphenylthiophene $(\underline{1})$ with dimethyl acetylenedicarboxylate $(\underline{2})$ in refluxing o-dichlorobenzene afforded 2,5-diphenylthiophene $(\underline{3})$, the phthalate $\underline{4}$, and dimethyl 2-phenylnaphtho[2,1-b]thiophene-4,5-dicarboxylate $(\underline{5})$ in 27, 12, and 6 % yields, respectively along with 36 % of recovered $\underline{1}$. The formation of $\underline{5}$ involves the unusual Diels-Alder addition of $\underline{2}$ to the diene comprised of one unsaturated bond of the thiophene system and one "Kekulé-bond" of a phenyl substituent.

The reaction of 2,5-diphenyl-1,4-dithiin ($\underline{6}$) with $\underline{2}$ in o-dichlorobenzene at 130 °C for 30 hr led to the isolation of the naphthodithiin 7 (9%) and dimethyl 3-phenylnaphtho[1,2-b]thiophene-4,5-dicarboxylate ($\underline{8}$) (8 %). The further conversion of 7 to $\underline{8}$ or 5 has not been effected. Thus extrusion of sulfur from an intermediate to 7 is assumed to proceed regioselectively to give $\underline{8}$, but not its isomer 5. When the reaction of $\underline{6}$ was carried out under the more vigorous conditions (in refluxing o-dichlorobenzene for 10 hr), $\underline{3}$ (6%), $\underline{4}$ (4%), and $\underline{5}$ (35%) were again isolated along with $\underline{1}$ (36%). Probably $\underline{3}$, $\underline{4}$, and $\underline{5}$ would be formed via $\underline{1}$ as a primary product from $\underline{6}$.

Treatment of 2,5-diphenyl-1,4-dithiin-1,1-dioxide ($\underline{9}$) with $\underline{2}$ in o-dichlorobenzene at 180 °C gave 5-phenylthiophene-2,3-dicarboxylate ($\underline{10}$) in 19 % yield. The mechanisms of the reaction are discussed in some detail.

 $E = COOCH_{2}$