PHOTOCHEMICAL AND THERMAL REACTIONS OF SOME BICYCLIC δ -THIA- α , β -UNSATURATED KETONES

Nobukazu Suto, Tsutomu Miyashi, Takayuki Yamaki and Toshio Mukai Department of Chemistry, Faculty of Science Tohoku University, Sendai 980, Japan

It has been reported that 9-thiabicyclo[3.3.1]nona-3,7-dien-2,6-dione ($\underline{1}$) which contains 8-ketosulfide and δ -thia- α , β -unsaturated ketone moieties undergoes photo-1,3-carbon shift to give 2-thiabicyclo[3.3.1]nona-3,7-dien-6,9-dione ($\underline{2}$), whereas the analogous compound, 8-thiabicyclo[3.2.1]octa-3-en-2-one ($\underline{3}$), upon irradiation, affords the photo-1,3-sulfur shift product, 8-thiabicyclo[4.1.1]octa-2-en-4,7-dione ($\underline{4}$). However, there is no generalized mechanistic interpretation to account for those two different types of photoreactions. In order to gain some insight into the mechanism of the photochemistry of δ -thia- α , β -unsaturated ketones, the photochemistry of 6-acetoxy-9-thiabicyclo-[3.3.1]nona-3,7-dien-2-one ($\underline{5}$) has been investigated.

The starting material ($\underline{5}$) was prepared by monoacethylation of 2,6-dihydroxy-9-thiabicyclo[3.3.1]nona-3,7-diene ($\underline{6}$) followed by the oxidation. Irradiation of ($\underline{5}$) in benzene with 350 nm light afforded the following four photo-products, 6-<u>exo</u>-acetoxy-2-thiabicyclo[3.3.1]nona-3,7-dien-9-one ($\underline{7}$)(12-13%), 9-<u>endo</u>-acetoxy-2-thiabicyclo[3.3.1]nona-3,7-dien-6-one ($\underline{8}$)(4-5%), 7-<u>exo</u>-acetoxy-2-thiabicyclo[4.3.0]nona-4,8-dien-3-one ($\underline{9}$)(10-26%) and 7-<u>endo</u>-acetoxy-2-thiabicyclo[4.3.0]nona-4,8-dien-3-one ($\underline{10}$)(17-20%), whereas in methanol irradiation of ($\underline{5}$) resulted in the formation of ($\underline{7}$) and ($\underline{8}$). Of these products, the formation of ($\underline{8}$) can be formally accomodated by 1,3-carbon shift, but the other products ($\underline{7}$, $\underline{9}$ and $\underline{10}$) can not be explained by the previously proposed mechanisms. The most likely mechanism for the formation of these products involves ketene intermediates ($\underline{11}$ and $\underline{12}$) which were detected by the appearance of the ir absorption maximum at 2150 cm⁻¹ during irradiation of ($\underline{5}$) in 2-Me-THF at 77°K.

In addition to the photochemical skeletal rearrangement of $(\underline{5})$ to $(\underline{7})$, the base-catalyzed skeletal rearrangement of 6-hydroxy-9-thiabicyclo[3.3.1]nona-3,7-dien-2-one $(\underline{13})$ leading to 6-hydroxy-2-thiabicyclo[3.3.1]nona-3,7-dien-9-ones $(\underline{14} \text{ and } \underline{15})$ with epimerization of the hydroxyl group was found. In connection with their mass spectra, the pyrolyses of 9-thiabicyclo[3.3.1]nona-3,7-dien-2,6-dione-9-oxide $(\underline{16})$ and 9,9-dioxide $(\underline{17})$ have been also studied.