Synthesis of Peptide Alkaloid, Amphibine-I and Related Compounds

Junko Koyama and Yukio Suzuta, Kobe Women's College of Pharmacy, Motoyamakita, Higashinada-ku, Kobe, Japan Kaoru Kuriyama, Shionogi Research Laboratory, Shionogi & Co. Ltd., Fukushima-ku, Osaka, Japan Haruaki Yajima, Kaname Koyama, and Hiroshi Irie<sup>\*</sup>, Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku Kyoto, Japan

Synthesis of amphibine-I  $(I_{A-a})$  and its diastereoisomeric compounds  $(I_{A-b})$ ,  $(I_{B-a})$ , and  $(I_{B-b})$  was completed by condensation of four diastereoisomeric l-(d-aminoethyl)-6,7-dimethoxy-2-methyl-l,2,3,4-tetrahydroisoquinolines  $(V_{A-a,b} \text{ and } V_{B-a,b})$  with benzyloxycarbonyl-L-valylglycine followed by removal of the protecting group.

Amphibine-I  $(I_{A-a})$  is one of the peptide alkaloids isolated from <u>Zizyphus amphibia A</u>. Cheval (Rhamnaceae) and its structure elucidation and synthesis were accomplished by Tschesche and his co-laborators<sup>1)</sup>, <sup>2)</sup>, suggesting that the naturally occurring alkaloid is a mixture of the diastereoisomers having (S,R) and (R,S) configuration at C-1 and C-9, respectively.

We report here the synthesis of amphibine-I and its dia-

-443-

stereoisomers in optically active form using four diastereoisomeric 1-( $\alpha$ -aminoethy1)-6,7-dimethoxy-2-methy1-1,2,3,4-tetrahydroisoquinolines ( $V_{A-a,b}$  and  $V_{B-a,b}$ ).

Condensation of the aldehyde (II) (racemic)  $^{3)}$  with dopamine hydrochloride in methanol under argon for 7 days gave a mixture of the diastereoisomeric tetrahydroisoquinolines (III<sub>A</sub> and III<sub>B</sub>) revealed by thin layer chromatography in 37% yield. The mixture was, without further purification, subjected to the methylation with diazomethane followed by Eschweiler-Clarke condition to give a mixture of the non-phenolic isoquinolines. Separation of the mixture was carried out at this stage by preparative thin layer chromatography, furnishing a pair of diastereoisomers  $(IV_{\rm p})$  and  $(IV_{\rm p})$ . The faster running one  $(IV_{\rm p})$ , m.p. 126-127°, showed the following spectroscopic properties: IR (CHCl<sub>3</sub>), 1760 and  $1700 \text{ cm}^{-1}$  (CO); NMR (CDCl<sub>3</sub>),  $\delta$ , 1.47 (3H, d, J=7Hz, CH-CH<sub>3</sub>), 2.52 (3H, s, N-CH<sub>3</sub>), 3.11 and 3.82 (3H each, s, OCH<sub>3</sub>), 6.24 and 6.61 (1H each, s, aromatic H), and 7.77 (4H, m, protons of the phthaloyl moiety). The slower running one (IV<sub>p</sub>), m.p. 163-165°, showed the same carbonyl bands in its IR spectrum and NMR spectrum (§) revealed 1.52 (3H, d, J=7Hz, CH-CH<sub>3</sub>), 2.27 (3H, s, N-CH<sub>3</sub>), 3.90 and 3.92 (3H each, s, OCH<sub>3</sub>), 6.67 and 6.81 (1H each, s, aromatic H), and 7.83 (4H, m, protons of the phthaloyl moiety). Removal of the phthaloyl moiety from  $(IV_{\rm p})$  and  $(IV_{\rm p})$  with hydrazine hydrate in the usual manner gave the corresponding amino-isoquinolines (V<sub>A</sub>) and (V<sub>B</sub>) in 85% yield, respectively. The amino-isoquinolines  $(V_{a})$  and  $(V_{B})$  were resolved

into four diastereoisomeric amino-isoquinolines  $(V_{A-a}, V_{A-b})$  $V_{B-a}$  , and  $V_{B-b}$ ) using di-(p-toluoyl)-1- and d-tartaric acids in acetonitrile and 1- and d-tartaric acids in methanol, respectively. [&] -Values of four diastereoisomeric amino-isoquinolines obtained by the above resolution were listed in Table II and CD curves of the corresponding benzoates (VI<sub>A-a,b</sub> and VI<sub>B-a,b</sub>) were depicted in Fig. I. Based on the sign of the Cotton effect around 285nm, it was, at least, indicated that  $(VI_{A-a})$  and  $(VI_{B-a})$  have the S-configuration and (VI<sub>A-b</sub>) and (VI<sub>B-b</sub>) have the R-configuration at C-1 position<sup>4)</sup>. The R-configuration at C-9 of  $(V_{n-2})$ was proposed from the fact that NMR spectrum of amphibine-I synthesised from  $(V_{A-a})$  was identical in the NMR spectrum with that of naturally occurring amphibine-I which had been confirmed to have the S- and R-configuration at C-1 and C-9, respectively. though it was reported that amphibine-I is contaminated with a small amount of the compound enantiomeric at both of the carbons. And configurations at C-9 position of the other diastereoisomers were culminated as indicated in the Chart.

Coupling reaction of each of the amino-isoquinolines  $(V_{A-a,b} \text{ and } V_{B-a,b})$  and benzyloxycarbonyl-valylglycine<sup>5)</sup> with DCC in the presence of N-hydroxybenztriazole<sup>6)</sup> gave the diastereo-isomeric isoquinolines  $(VII_{A-a}, VII_{A-b}, VII_{B-a}, \text{ and } VII_{B-b})$ , which were hydrogenated with palladium as a catalyst in methanol to give the respective four diastereoisomers  $(I_{A-a}, I_{A-b}, I_{B-a}, \text{ and } I_{B-b})$ . CD curves of these compounds were shown in Fig. II. Of



Suffix





| 5011173                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A: $C_1 = S$ , R, $C_0 = R$ , S                                                                                                                                                                                                                                                                                                                                |
| B: $C_1 = S, R, C_9 = S, R$                                                                                                                                                                                                                                                                                                                                    |
| $A-a: C_1 = S, C_9 = R$                                                                                                                                                                                                                                                                                                                                        |
| A-b: $C_1 = R$ , $C_9 = S$                                                                                                                                                                                                                                                                                                                                     |
| B-a: $C_1 = S$ , $C_q = S$                                                                                                                                                                                                                                                                                                                                     |
| B-b: $C_1 = R$ , $C_9 = R$                                                                                                                                                                                                                                                                                                                                     |
| (I) $R^{1}=R^{2}=Me$ (L)<br>$R^{3}=CO-CH_{2}-NH-CO-CH-NH_{2}$ (= H-Val-Gly), H<br>$CH-Me_{2}$<br>(III) $R^{1}=R^{2}=H$ , $R^{3}=phthaloyl$<br>(IV) $R^{1}=R^{2}=Me$ , $R^{3}=phthaloyl$<br>(V) $R^{1}=R^{2}=Me$ , $R^{3}=H_{2}$<br>(VI) $R^{1}=R^{2}=Me$ , $R^{3}=CO-ph$ , H<br>(VII) $R^{1}=R^{2}=Me$ (L)<br>$R^{3}=ph-CH_{2}-O-CO-NH-CH-CO-NH-CH_{2}-CO$ , H |
| CH-Me <sub>2</sub>                                                                                                                                                                                                                                                                                                                                             |



| Table. II        | ,                          |                       |                   |                           |
|------------------|----------------------------|-----------------------|-------------------|---------------------------|
|                  | [α] <sub>D</sub> free base | [¤] <sub>D</sub> salt |                   | [¤] <sub>D</sub> benzoate |
| V <sub>A-a</sub> | + 21°                      | + 106°<br>(methanol)  | VI <sub>A-a</sub> | - 78°                     |
| V <sub>A-b</sub> | - 19.8°                    | - 100°<br>(methanol)  | VI <sub>A-b</sub> | + 70°                     |
| V <sub>B-a</sub> | + 10°                      | - 24°<br>(water)      | VI <sub>B-a</sub> | - 8.5°                    |
| V <sub>B−b</sub> | - 10°                      | + 24°                 | VI <sub>B-b</sub> | + 9.0°                    |
| 1                | (pyridine)                 | i (water) i           | I                 | (methanol)                |

Fig. I

Fig. II



these compounds,  $(I_{A-a})$  was identical with amphibine-I in spectroscopic comparison and TLC behaviour, though certain discrepancy of  $[\alpha]_D$ -values between our compound and that of literature is noted (see Table I).

## REFERENCES

- R. Tschesche, C. Spilles, and G. Eckhardt, <u>Chem</u>. <u>Ber</u>., 1974, <u>107</u>, 1329.
- R. Tschesche, J. Moch, and C. Spilles, <u>ibid</u>., 1975, <u>108</u>, 2247.
- K. Balenović, N. Bregant, D. Cerar, D. Fleš, and
  I. Jambrešić, J. Org. Chem., 1953, <u>18</u>, 297.
- G. Snatzke, G. Wollenberg, J. Hrbek, Jr., F.
  Santavý, K. Bláha, W. Klyne, and R. J. Swan, Tetrahedron, 1969, <u>25</u>, 5059.
- K. Hofmann, E. Stutz, G. Spühler, H. Yajima, and
  E. T. Schwartz, <u>J. Am. Chem. Soc</u>., 1960, <u>82</u>, 3727.
- W. König and R. Geiger, <u>Chem. Ber.</u>, 1970, <u>103</u>, 2024.

We are grateful to Professor R. Tschesche (Institute of Organic Chemistry and Biochemistry, Bonn University) for his generous supplies of amphibine-I and its NMR chart.

Received, 23rd December, 1977