THE REGIOSELECTIVITY OF THE CYCLOADDITIONS OF KETENES WITH N-ALKYL- AND N-ARYLNITRONES

Magid A. Abou-Gharbia and Madeleine M. Joullie* Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104, u.S.A.

$Iwao Miura$

Department of Chemistry, Columbia University New York, N. Y. 10027, U.S.A.

Cyclopentamethyleneketene, tert-butylcarbethoxyketene, and tert-butylcyanoketene react with N-arylnitrones to form oxazolidinones while tert-butylcyanoketene reacts with N-methyl- and N-ethylnitrones to afford isoxazolidinones.

Our interest in the reactions of ketenes with N-arylimines, ketenimines, azines and N-alkylimines^{\perp} led us to investigate the cycloadditions of ketenes and nitrones. We recently reported a general method for preparing N-methylnitrones as stable trans forms from aldehydes or ketones and N-methylhydroxylamine-0-sulfonic acid.² We would now like to report the reaction of N-aryl- and N-alkylnitrones with various ketenes.

The reactions of diphenylketene and dimethylketene with N-alkylnitrones are known to afford both azetidinones and oxazolidinones. $3-5$ Similarly, we found that the reactions of cyclopentamethyleneketene, tert-butylcarbethoxyketene, and tert-butylcyanoketene with N-arylnitrones (1a-d), in dry toluene, yielded oxazolidinones $(2, 3a-e)$, but we did not observe the formation of azetidinones. N-Alkylnitrones (le, f) , on the other hand, reacted with tert-butylcyanoketene (110^oC, 12 hr) to afford the corresponding isoxazolidinones (a ,b). The physical and spectral properties of compounds 2, $3a, d, e$ and $4a, b$ are summarized in Table 1.

 $-457-$

 $\overline{1}$

 $\overline{2}$

 A R = CH₃, R' = CO₂C₂H₅

<u>b</u> R = OCH₃, R' = CN \underline{c} $R = F$,
 \underline{d} $R = CF$ $R^{\dagger} = C N$ $R = CF₃$, $R^+ = CN$ e R = CH_3 $R^{\dagger} = C N$ **NC** $\overline{\pi}$

 $R = CH₃$ **b** $R = C_2H_5$

 $\ddot{}$

 \overline{a}

 $\hat{\boldsymbol{\beta}}$

Table 1 Physical and Spectral Properties of Selected Oxazolidinones and Isoxazolidinones

l.

 $-459-$

 \sim

Treatment of $\underline{2}$ with lithium aluminum hydride gave 9-fluorenol, presumably Treatment of $\underline{2}$ with lithium aluminum hydride gave 9-fluorenol, presumably
via a sequence involving reduction of the oxazolidinone function and decomposition of the resulting hydroxy ether to fluorenone which subsequently reacts with additional lithium aluminum hydride to yield the final product. The reduction of 3a with lithium aluminum hydride, however, afforded a stable diol. (5), further supporting the oxazolidinone structure of $3a$. The physical properties of 5 are included in Table 1.

Distinction between the oxazolidinone and isoxazolidinone structures is provided by the 13 C chemical shift of the C-9 spiro carbon: $\sim 83-84$ ppm for isoxazolidinones and *2.* 102-103 ppm for oxazolidinones.6 The latter value is indicative of a carbon between two electronegative elements. In addition, the **pmr** resonance of the tert-butyl group appears at \sim 1.25 ppm in the oxazolidinones but at \sim 0.80 ppm in the isoxazolidinones. This shift difference can be ascribed to the proximity of the tert-butyl group to the fluorene system in isoxazolidinones but not in the oxazolidinones and, correspondingly, the influence of the diamagnetic fluorene ring current. Further evidence for the oxazolidinone structure is provided by the 'llNl4X spectrum of **a.** The broadened M'BB' pattern observed for the protons of the N-phenyl group at room temperature undergoes considerable change as the temperature is decreased (Figure 1). This effect may be attributed to restricted rota. tion of the phenyl group which results from its interaction with the tert-butyl substituent on C-11. Further confirmation is provided by the low temperature⁷ 13 C nmr spectrum of $3a$ which exhibits four different resonances for C-20, C-21, $C-23$, and $C-24$. In accord with these results, the $\frac{1}{2}$ HNMR spectrum of 2 showed no major temperature dependence, with the exception of the cyclohexyl ring protons, as would be expected in the absence of steric interactions.

 $-460-$

 $\frac{3e}{3}$ in $CDCD_{3}$

 \sim

Figure 1

 $\sim 10^6$

peferences and Notes:

- 1. A. S. Gomes and M. M. Joullie, J. Heterocycl. Chem., 1969, 6, 729; J. M. Bohen and M. M. Joullie, J. Org. Chem., 1973, 38, 2652; Z. Lysenko and M. M. Joullie, J. Org. Chem., 1976, 41, 3925; Z. Lysenko, M. M. Joullie, I. Miura and R. Rodehaugh, Tetrahedron Lett., 1977, 1705.
- 2. M. Abou-Gharbia and M. M. Joullie, Synthesis, 1977, 2, 318.
- 3. **A.** F. Gettins and G. **A.** Taylor, J. Chem. Soc., Chem. Corn., 1972, 1146.
- 4. D. S. C. Black, R. F. Crozier and V. C. Davis, Synthesis, 1975, $\frac{h}{2}$, 205.
- 5. R. Nigel Pratt, D. P. Stokes, and G. **A.** Taylor, J. C. S. Perkin I, 1975, 498.
- 6. The assignment of 13 C chemical shifts was made on the basis of shift comparisons with C-9 substituted fluorenes, selective proton dacoupling experiments and low temperature nmr studies.
- י
¹ אוי 7. Low temperature $^{\text{+}}$ HNMR studies were carried out both in acetone- $^{\text{d}}{}_{6}$ $(+ 10$ to -80° C) and CDCl₃ $(+ 30$ to -70° C).

Received, 17th January, 1978