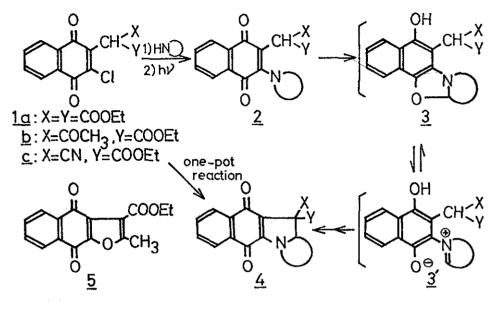
A CONVENIENT PHOTOSYNTHESIS OF HETEROCYCLIC QUINONES BY A ONE-POT REACTION

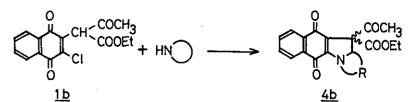
Mitsuo Akiba^{*}, S<u>atoshi</u> I<u>kuta</u>, and T<u>oyozo</u> T<u>akada</u> Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo, 192-03, Japan


The photochemical reaction of 2-chloro-3-acetylethoxycarbonylmethyl-1,4-naphthoquinone (<u>1b</u>) with various secondary amines (pyrrolidine, piperidine, morpholine, and hexamethyleneimine) provided a convenient, onepot, preparative route to the heterocyclic quinones (<u>4b</u>) as a mixture of stereoisomers due to the different substituents. A similar photoreaction of 2-chloro-3-ethoxycarbonylcyanomethyl-1,4-naphthoquinone (<u>1c</u>) with amines gave selectively one diastereomer of the series (4c).

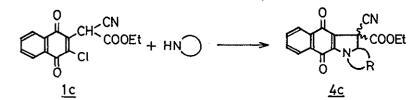
The stereochemical studies on these photoproducts were investigated by using the europium-shifted spectra.

1,4-Benzoquinones bearing certain secondary amino-substituents have been shown to photoisomerize readily in sunlight to the benzoxazoline and benzoxazole derivatives¹. More recently, we have reported an example of a novel type of photoinduced intramolecular cyclization in various solvents using the cyclic amino-1,4-naphthoquinones (2a) possessing an active methylene group at the 2-position to form the indoloquinones ($\frac{4a}{2}$)². Also, these consecutive reactions (amino substitution, photolysis, and ring conversion) might be carried out in high yields in a one-pot sequence without isolation of intermediates³.

In this paper we wish to describe some other examples of this novel type of the photosynthesis of the heterocyclic quinones by a one-pot reaction. The overall process can be represented as shown in Scheme I.


A solution of aminoquinones (2b) prepared from the reaction of 2-chloro-3-

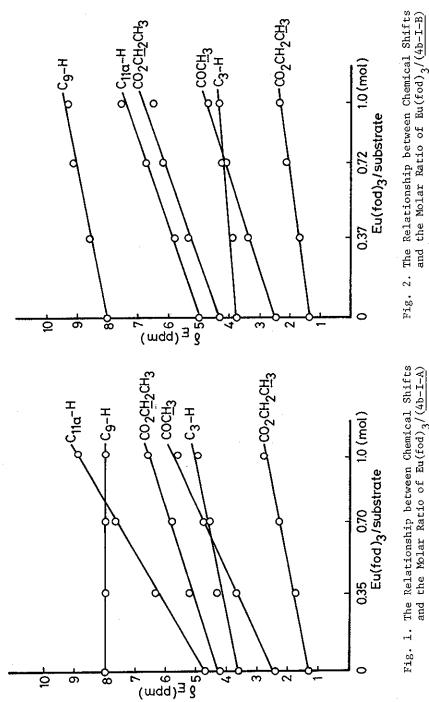
Scheme I

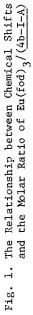

acetylethoxycarbonylmethyl-1,4-naphthoquinone $(\underline{1b})^4$ with various secondary amines (pyrrolidine, piperidine, morpholine, and hexamethyleneimine) in ethanol was irradiated with a high pressure mercury lamp through Pyrex glass under a stream of nitrogen for 1~2 h. After allowing each of the irradiated solutions of ($\underline{2b}$) to stand for more than 24 h at room temperature followed by evaporation of the solvent, each of the two stereoisomers of the ring-closed quinones ($\underline{4b}$) due to the different substituents (COCH₃, COOEt) were isolated by preparative thin layer chromatography. The phthaloylfuran ($\underline{5}$)⁴, mp 163°, was also obtained as a minor product. A similar photoreaction using 2-chloro-3-ethoxycarbonylcyanomethyl-1,4-naphthoquinone ($\underline{1c}$)⁴ gave selectively one stereoisomer of ($\underline{4c}$), except when using hexamethyleneimine, as a major product.

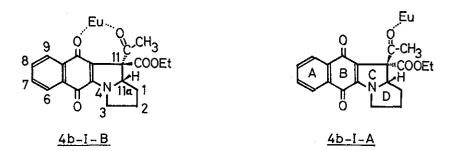
The structural assignments for $(\underline{4b})$ and $(\underline{4c})$ were based on their analytical and spectral results which were in good agreement with their formulation. The results are summarized in Table I and II. The NMR and IR spectra of both stereoTable I. Photoreaction of 2-Chloro-3-acetylethoxycarbonylmethyl-1,4-naphthoquinone (<u>1b</u>) with Various Cyclic Amines in a One-pot Sequence.

Product (<u>4b</u>)		mp	Yield	IR(KBr) cm ⁻¹				NMR & (CDCl ₃) ppm bridgehead		Mass
No.	-R-	(°C)	(%)	ester	acety1	keto	amide	•	сос <u>н</u> 3	M ⁺ (m/e)
I-A	(CH ₂) ₃	78	20	1730	1705	1675	1632	4.72	2.40	353
I-B	(CH ₂) ₃	175	20	1736	1696	1672	1618	5.04	2.50	353
II–A	(CH ₂) ₄	139	26	1724	1700	1670	1620	5.08	2.34	367
∏−В	(CH ₂) ₄	170	20	1742	1700	1680	1620	5.10	2.52	367
III.–A	(CH ₂) ₃ 0	107	25	1720	1702	1670	1623	4.78	2.18	369
Ш-В	(CH ₂) ₃ 0	154	24	1730	1702	1673	1620	4.88	2.52	369
IV−A	(CH ₂) ₅	169	14	1732	1702	1690	1635	4.60	2.38	381
N-B	(CH ₂) ₅	140	20	1740	1699	1678	1620	4.92	2.50	381

Table II. Photoreaction of 2-Chloro-3-ethoxycarbonylcyanomethyl-1,4-naphthoquinone (1c) with Various Cyclic Amines in a One-pot Sequence.


Prod	uct (<u>4c</u>)	mp	Yield	IR(KBr)	cm ⁻¹	NMR δ(CDC1 ₃) ppm bridgehead	Mass
No.	-R-	(°C)	(%)	ester	keto	amide		M ⁺ (m/e)
I-B	(CH ₂) ₃	183	32	1742	1685	1630	4.62	336
П-В	(CH ₂) ₄	210	24	1755	1695	1635	5.06	350
Ⅲ–B	(CH ₂) ₃ 0	203	40	1740	1680	1625	4.88	352
	(CH ₂) ₅		9	1728	1676		5.14	364
№-В	(CH ₂) ₅	136	24	1740	1675	1618	. 4.54	364


isomers of $(\underline{4b})$ were similar to each other expect for the following observations. The more polar isomers, $(\underline{4b-A})$ series (I, II, III, and N), showed the ester absorptions at a lower frequency in their IR spectra and the appearance of a bridgehead methine and acetyl methyl proton higher in the field in their NMR spectra in comparison to the less polar isomer (4b-B).


In attempt to elucidate the stereochemistry of these photoproducts, we investigated the LIS⁵ spectra of (4b-I-A) and (4b-I-B) as model compounds with Eu(fod)₃. We also observed a distinctive difference between europium-coordinated forms of these compounds. The NMR spectra of these isomers were studied in detail using a double irradiation experimental technique. Figure 1 and 2 show plots of the chemical shifts of selected protons in (4b-I-A) and (4b-I-B)as a function of added shift reagent.

The signals centered at δ 5.04 (C_{11a}-H) and 8.00 (C₉-H) ppm in (<u>4b-I-B</u>) showed the greatest shift, suggesting that these indicated the closest protons to the metal ion in the complex. On the other hand, in (<u>4b-I-A</u>), a bridgehead methine proton at 4.72 ppm was affected greatly with the contact shift, but an aromatic proton (C₉-H) was not affected. The observed S values were 2.5 and 1.24 for the C_{11a} and C₉ protons in the former case and 4.1 and 0 in the latter. The comparable difference between the S values for the C_{11a} or C₉ protons in (<u>4b-I-B</u>) and (<u>4b-I-A</u>) would be consistent with having different europium-coordinated forms of these compounds. Namely, the above results indicate that the shift reagent may coordinate predominantly with the acetyl carbonyl oxygen owing to the steric hindrance of the ring D in (<u>4b-I-A</u>), and bidentately with acetyl and amide carbonyl oxygen in (<u>4b-I-B</u>) considering the coordinat-ing ability (acetyl > vinylogous amide > ester carbonyl oxygen). Therefore, the stereochemistry of the acetyl group and C_{11a}-H was assigned as the cis configuration in the (<u>4b-A</u>) series and trans in (<u>4b-B</u>) from the S values.

-816-

The stereochemistry of the ethoxycarbonyl group and C_{11a} -H in $(\underline{4c-I}N)$ might be assigned as the trans configuration, except the case of $(\underline{4c-N}A)$, by the similarity with the europium-shifted spectra of $(\underline{4b-I-B})$ and $(\underline{4c-I})$ and comparing the ester carbonyl absorptions in the IR spectra of $(\underline{4b})$ and $(\underline{4c})$. It is noteworthy that this photocyclization of $(\underline{2c})$ containing the smaller ring appears to be stereoselective giving only one diastereomer.

The stereochemical studies on a series of change in the europium-shifted spectra influenced by the ring size are in progress.

<u>Acknowledgement</u> Our sincere thanks are offered to Prof. S. Ohki for his continuous interest and encouragement on this work.

References and Notes

1 D.W. Cameron and R.G.F. Giles, <u>J. Chem. Soc. (C)</u>, <u>1968</u>, 1461; R.G.F. Giles, <u>Tetrahedron Letters</u>, <u>1972</u>, 2252; R.G.F. Giles, P.R.K. Mitchell, and G.H.P. Roos, <u>J. Chem. Soc. (Perkin I)</u>, <u>1973</u>, 439.

 M. Akiba, Y. Kosugi, M. Okuyama, and T. Takada, <u>Heterocycles</u>, 1977, <u>6</u>, 1113.
M. Akiba, Y. Kosugi, M. Okuyama, and T. Takada, <u>J. Org. Chem.</u>, 1978, <u>43</u>, 181.
G.A. Reynolds, J.A. Van Allan, and R.E. Adel, <u>J. Org. Chem.</u>, 1965, <u>30</u>, 3819.
For the meaning of abbreviations, see the glossary in "Nuclear Magnetic Resonance Shift Reagent", R.E. Sievers, Ed., Academic Press, New York, 1973. Received, 22th April, 1978