A New Route to (±)-cis-2-Oxabicyclo[3.3.0]oct-6-en-3-one, A Prostaglandin Synthon

S<u>eiichi</u> T<u>akano</u>*, H<u>iromitsu</u> I<u>wata</u>, and K<u>unio</u> O<u>gasawara</u> (Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan)

A new route to $(\pm)-cis-2-$ oxabicyclo[3.3.0]oct-6-en-3-one(l), an important prostaglandin synthon, has been developed using a symmetrical starting material(3).

Since a Hungarian group¹ has reported the conversion of *cis*-2-oxabicyclo[3.3.0]oct-6-en-3-one(1) into *cis*-(7-acetoxy-6-acetoxymethyl)-2-oxabicyclo[3.3.0]octan-3-one(2), a key prostaglandin intermediate², *via* a regio- and stereospecific addition of formaldehyde by the Prins reaction, synthetic importance of hitherto less valuable lactone(1), especially in a chiral form, was greatly increased. There have been some interesting reports on the chiral synthesis of the lactone(1)^{3,4,5}, however, they still have rooms for improvement from the practical point of view. (Chart 1)

-1249-

We now report a simple synthesis of the lactone(1) in a racemic form from readily accessible nortricyclanone(3)⁶ via exo-5-bromonorcamphor(6) intending a chiral synthesis. Since a chiral bromoketone(6) has been obtained by treating the iminium salt(4)⁷ with hydrobromic acid, a conversion of (±)-bromo-ketone(6) into the (±)-lactone(1) would be promissing a chiral synthesis. (Chart 2)

Treatment of nortricyclanone(3) with 47% hydrobromic acid(1 molar equiv) in boiling acetic acid gave exo-5-bromonorcamphor⁸(6), bp 119-122°(17 mm Hg), mp 26.5-27.5°(1it.⁸ mp 31-32°), $v_{max}^{Nujo1}(cm^{-1})$ 1745, $\delta^{CDCl_3}(ppm)$ 4.17(1H, m, $-\dot{C}HBr$), in 96% yield. Baeyer-Villiger oxidation of <u>6</u> with *m*-chloroperbenzoic acid(1.2 molar equiv) gave the bromo- δ -lactone⁹(7), mp 74-76°, $v_{max}^{Nujo1}(cm^{-1})$ 1715, $\delta^{CDCl_3}(ppm)$ 4.83(1H, m, $-\dot{C}H$ -OC-), 4.30(1H, m, $-\dot{C}HBr$) in 92% yield as a single product. Refluxing the δ -lactone(7) with ethanol in the presence of a catalytic amount of *p*-toluenesulfonic acid¹⁰ formed the unstable ethyl ester(8), oil, $v_{max}^{neat}(cm^{-1})$ 1720, quantitatively, which, without further purification, upon treatment with silver per-chlorate¹⁰(1.5 molar equiv) in aqueous dimethoxyethane at room temperature, afforded the γ -lactone alcohol(9), mp 76-77°, $v_{max}^{Nujol}(cm^{-1})$ 3445, 1745, $\delta^{CDCl_3}(ppm)$ 5.13(1H, br.t, $-\dot{C}_{HOC}$), 4.50(1H, m, $-\dot{C}_{HOH}$), in 91% yield. (Chart 3)

After various attempts were carried out on the derivatives of the alcohol(9), such as the chloride¹¹(10), the xanthate¹²(11), the tosylate¹³(12), and mesylate(13), the desired lactone(1) was obtained at best in 71% yield as a single product from the mesylate(3) (see Table 1, Entry 14). (Chart 4) Thus, treatment of 9 with methanesulfonyl chloride in methylene chloride containing triethylamine gave the mesylate(13), mp 80- $80,5^{\circ}, V_{\text{max}}^{\text{Nujol}}(\text{cm}^{-1})$ 1750, $\delta^{\text{CDCl}_3}(\text{ppm})$ 5.03-5.50(2H, m, $-\dot{\text{CH}}$ -OC- and $-\dot{\text{CH}}$ -OSO₂-), 3.05(3H, s, CH₃SO₂-) in 98% yield. Heating <u>13</u> with two molar equivalents of pyridine in benzene solution in a sealed tube at 240-250° led to a regioselective olefin formation to give $(\pm) - cis - 2 - oxabicyclo[3.3.0]oct - 6 - en - 3 - one (1)$ in 71% yield. In the final stage, application of high temperature was most important since a concurrent formation of unseparable isomer, $(\pm) - cis - 2 - oxabicyclo[3.3.0]oct - 7 - en - 3 - one^{14,15}(14)$, was predominant at lower temperature (see Table 1).¹⁶

Total yield(%)		72	no reaction	93	40.5	76	82	66	37	17	81	31	47	81	71	
110+ (40 + 2 - 4 - 1	atio*a)	*b(0.3)	* ⁴	0	0		0	*b(0.7)	0	0	0		0			
	<u>14</u>	1.7	0	H	Ч	1	2.25	1.4	Ч	н	— н	0	н		0	
4			0	1.3	2	8	Ч	Ч	1.4	1.5	2	г	2.1	9		1
Condition	Time	36	9	0.5	7	8	ო	24	20.5	24.5	2	ε	4	ø	0.5	
	Temperature	60°	200°*c	230-240°	170-180°	210-220°*c	0°	60°	110-120°	140-150°	170-180°	230-240°	140-150°*c	210-220°*c	24Q-250°*c	
	Solvent	DMF	benzene	neat	rrge excess)	benzene	DME	DMF	excess)	arge excess)	rge excess)	e excess)	benzene	benzene	benzene	
	Base (molar equiv)	DBU(1.1)			γ-collidine(la	pyridine	t ^{BuOK(1.2)}	DBU(1.1)	 pyridine(large	2,6-lutidine(l	Y-collidime(la	quinoline(large	pyridine(2)	pyridine(1)	pyridine(2)	NMR spectra
Starting Material		10	11	11	12	12	13	13	13	13	13	13	13	13	13	ermined by
Entry		Ч	5	m	4	5	9	2	8	6	10	11	12	13	14	*a dete

Table 1

-1253---

HETEROCYCLES. Vol. 9, No.9, 1978

*c heated in sealed tube

*b starting material

References and Notes

- I. Tömösközi, L. Gruber, G. Kovács, I. Székely, V. Simonidesz, Tetrahedron Lett., 4639 (1976).
- Cf. K. Sakai and N. Nakamura, J. Synth. Org. Chem. Japan, 36, 93 (1977).
- J.J. Partridge, N.K. Chadha, and M.R. Uskoković, J. Amer. Chem. Soc., 95, 7171 (1973).
- 4. S. Takano, K. Tanigawa, and K. Ogasawara, Chem. Commun., 190 (1976).
- 5. S. Terashima, S. Yamada, and M. Nara, Tetrahedron Lett., 1001 (1977).
- H.C. Brown and E.N. Peters, J. Amer. Chem. Soc., <u>97</u>, 1927 (1975) and J. Meinwald, J. Crandall, and W.E. Hymans, Org. Synth. Coll. Vol, 5, 863 and 866 (1973).
- S. Takano, H. Iwata, and K. Ogasawara, Heterocycles, <u>9</u>, in press (1978).
- H. Krieger, Suomen Kemistilehti, <u>34</u>B, 24 (1961) (Chem. Abstr., 55, 23370f(1961)).
- 9. Satisfactory analytical data were obtained for all new compounds.
- 10. Cf. S. Takano, N. Kubodera, and K. Ogasawara, J. Org. Chem., <u>42</u>, 786 (1977) and S. Takano, N. Kubodera, H. Iwata, and K. Ogasawara, Heterocycles, <u>8</u>, 325 (1977).
- 11. Prepared in 73% yield by treating 9 with thionyl chloride in pyridine at 0°.
- 12. Prepared in 30% yield by treating 9 with carbon disulfide in the presence of sodium hydride followed by with methyl iodide.

- 13. Prepared in quantitative yield by treating $\underline{9}$ with p-toluenesulfonyl chloride in pyridine at room temperature.
- 14. Compound <u>14</u> could not be separated in pure state and its formation and proportion were determined by NMR spectra¹⁵.
- 15. T.K. Das Gupta, D. Felix, U.M. Kempe, A. Eschenmoser, Helv. Chim. Acta, 55, 2198 (1972).
- 16. This behavior could be due to a thermal conversion of <u>14</u> into <u>1</u> which is thermodynamically more stable and the thermal behaviors of the compounds <u>1</u> and <u>14</u> are now under investigation. We thank one of the refrees for pointing out the possibility of the thermal conversion of 14 into 1.

Received, 3rd June, 1978