STUDIES IN PROTOBERBERINE ALKALOIDS. XVI¹. NMR SPECTRAL STUDIES
OF 10.11-DIOXYGENATED 13-METHYLTETRAHYDROPROTOBERBERINES

Bantwal R. Pai*, Kuppuswamy Nagarajan, Hosbett Suguna and Sankaran Netarajan

Department of Chemistry, Presidency College, Madras-5, India

The NMR chemical shift differences of protons at C_{13a} and C_8 and the methyl protons at C_{13} of <u>cis-</u> and <u>trans-fused</u> 10,11-dioxygenated 13-methyltetrahydroprotoberberines are discussed.

The relative stereochemistry of 13-methyltetrahydroprotoberberines has been established by a study of their NMR spectra 2,3,4 . The chemical shift of the C_{13} -CH $_3$ group in compounds with trans-fused rings 8/C and a cis-orientation of protons at C_{13} and C_{13a} is between δ 0.90-1.00 while it is near δ 1.40-1.50 in those with cis-fused rings 8/C and a trans-orienta ion of the protons. It has also been observed that in the NMR spectra of trans-fused 9,10-dioxygenated 13-methyltetra-hydroprotoberberines the C_8 -protons appear as an A8 quartet with a large chemical shift difference, while in the corresponding cis quinolizidines the shift difference is smaller 3,4 . No mention however has been made about 10,11-dioxygenated 13-methyltetrahydroprotoberberines. Recently Cushman at al. 5 have pointed out that the C_8 protons of the 8/C cis-fused 10,11-dioxygenated

tetrahydroprotoberberine $\underline{1}$ appeared as two doublets (J=16 Hz) at δ 3.73 and 4.22, with the higher field doublet overlapping the signal for C_{13a} proton. In contrast, the C_8 protons of $\underline{2}$ (trans-quinolizidine) were assigned to a broad singlet which appeared at δ 3.72.

Our study of the 90 MHz NMR spectra of compounds 3 to 8 (Table I) shows that in the 10,11-dioxygenated 13-methyltetrahydro-protoberberines the C₈ protons are observed as an AB quartet in all cases irrespective of whether the 8/C ring fusion is cis or trans⁶. A scrutiny of the data in Table I and Table II leads to the further conclusion that the centre of the AB quartet appears relatively further downfield in all cases of cis-quinolizidines compared to the trans-quinolizidines by about 0.15-0.20 ppm . In the 10,11-dioxygenated compounds the signals of the C₈ protons are separated from each other by about 0.45-0.48 ppm in the cis and 0.40-0.48 ppm in the trans-quinolizidines, while the corresponding values in 9,10-oxygenated compounds are 0.13-0.18 and 0.55-0.72.

The difference is somewhat smaller (0.07 ppm) for compounds 7 & 8.

$$R_1$$
 R_1 R_2 R_3 R_4 R_4 R_4 R_5 R_5 R_5 R_5 R_5 R_6 R_6 R_7 R_8

$$3 R_1 = CH_3; R_2 + R_2 = CH_2$$

$$5 R_1 + R_1 = R_2 + R_2 = CH_2$$

$$7 R_1 = CH_3; R_2 = H$$

$$\frac{4}{1}$$
 R₁ = CH₃; R₂+R₂ = CH₂

$$6 R_1 + R_1 = R_2 + R_2 = CH_2$$

$$8 R_1 = EH_3; R_2 = H$$

$$g \cdot R_1 = R_2 = CH_3$$
(Meso corydaline)

$$\frac{11}{1} \quad \begin{array}{l} R_1 = CH_3; \quad R_2 + R_2 = CH_2 \\ \text{(Thalictrifoline)} \end{array}$$

$$\begin{array}{ccc} 10 & R_1 = R_2 = CH_3 \\ & \text{(Corydaline)} \end{array}$$

$$R_1 = CH_3; R_2 + R_2 = CH_2$$
 (Cavidine)

$$\frac{14}{\text{(Thalictricevine)}} R_1 + R_1 = CH_2; R_2 = CH_3$$

Another point worth mentioning is the chemical shift of the angular proton at C_{13a} . Kametani and coworkers have studied the NMR spectra of a number of 1-substituted tetrahydroprotoberberines and have shown that the angular proton of a <u>trans</u>-quinolizidine resonates upfield from δ 3.80, whereas in the case of a <u>cis</u>-quinolizidine this signal is observed downfield from δ 3.80. This observation was also made in the NMR spectra of caseadine (in CDCl₃ as well as in C_6D_6)8. This does not seem to be the case for 13-methyltetrahydroprotoberberines. The tables show that the C_{13a} proton in these compounds generally appears around δ 3.70. Noteworthy is the fact that in each pair the C_{13a} proton of the <u>trans</u>-quinolizidine appears at lower field than in the corresponding cis-quinolizidine.

The most consistent and dramatic differences between the <u>cis</u>-and <u>trans</u>-quinolizidine series are seen only for the chemical shifts of the methyl groups at C_{13} . Thus the values range from δ 1.43 to 1.48 for the <u>cis</u>- and from δ 0.88 to 0.99 for the <u>trans</u>-series, showing a difference of about 0.5 ppm.

Based on these observations we conclude that the assignment of stereochemistry of the B/C ring fusion in 10,11-dioxygenated 13-methyltetrahydroprotoberberines should be made on the basis of the chemical shifts of the C_{13} methyl doublets only, which could be further strengthened by an inspection of the chemical shifts for the C_8 protons.

Table I

NMR Chemical Shifts $(6, \ \mathsf{ppm})$ of $10,11-\mathsf{Dio}\mathsf{xygenated}$ $13-\mathsf{Methyltetrahydroprotoberberines}$

COMPOUND	C ₈ -Proton	Centre of AB quartet due to C _B -proton	C _{13a} -H	С13-СН3	Remark
←l	3.73, 4.22	3,98	3.67 (J=8 Hz)	1.48	cd
1 10	3.72 (broad singlet)	3.72	3.88	26*0	σ
က	3.75, 4.23 (J=15 Hz)	3.99	3.75(d) (J=8 Hz)	1.49 (J=7 Hz)	Д
41	3.62, 4.02 (J=15 Hz)	3+80	3.78(d) (3=2-3 Hz)	0.99 (3=7 Hz)	۵
ភ	3.72, 4.17 (J=15 Hz)	3+95	3.69(d) (J=8 Hz)	1.45 (3=7 Hz)	م
ol	3.56, 3.96 (Jm15 Hz)	3.76	3.70(d) (3=2-3 Hz)	0.96 (J=7 Hz)	۵
7	3.63, 4.09 (J≖15 Hz)	3,86	3.59(d) (J=8 Hz)	1.43 (J=7 Hz)	Ω
ထ။	3,55, 4,03 (J=15 Hz)	3,79	3.78 (J#√2 Hz)	0.88 (3=7 Hz)	۵

90 MHz NMR spectrum run in ${
m CDCl}_3$, ${
m ref.6}$ a Data reported by Cushman et al., ref.5;

Table II

	rberines	Ref.	м	ဗ	ະດ	ស	4	4
	NMR Chemical Shifts (5, ppm) of 9,10—Dioxygenated 13-Methyltetrahydroprotoberberines	C ₁₃ -CH ₃	1.48	0.97	1.48	0.98	1,43	0.93
77 0705		С _{13а} -н	3.62 (J=7.5 Hz)	3.58 (J#3.0 Hz)	3.68 (J≈7.5 Hz)	3.74	3.56	3.66
	f 9,10-Dioxygenated	Centre of AB quartet due to C ₈ -proton	4.05	3.84	3.96	3,80	3.99	3.80
	s (6 , ppm) c	C ₈ -Proton	3.97, 4.13	3,49, 4,19	, 4.02	, 4.07	3,90, 4,08	3.44, 4.16
	Shift	18 18	3.97	3.49	3.89,	3,52,	3,90	3,44
	NMR Chemical	COMPOUND	6	티	티	12	13	14

Acknowledgement

We are very grateful to Professor Maurice Shamma for providing us with samples of compounds 7 and 8 and for his helpful suggestions. H.S. and S.N. thank 'Amrutanjan Limited, Madras-4, India' for financial assistance.

References and Notes

- 1 For Part XV see B.R. Pai, S. Natarajan, H. Suguna and G. Manikumar, J. Grg. Chem., 1978, 43, 1994
- 2 M. Shamma, C.D. Jones and J.A. Weiss, Tetrahedron, 1969, 25, 4347
- 3 C.-K. Yu, D.B. MacLean, R.G.A. Rodrigo and R.H.F. Manske, Canad. J. Chem., 1970, 48, 3673.
- 4 T.R. Govindachari, K. Nagarajan, R. Charubala, B.R. Pai and P.S. Subramanian, Indian J. Chem., 1970, 8, 769.
- 5 M. Cushman, J. Gentry and F.W. Dekow, <u>J. Org. Chem.</u>, 1977, <u>42</u>, 1111.
- and T.R. Govindachari, K. Nagarajan, S. Natarajan and B.R. Pai, Indian J. Chem., 1971, 9, 1313 for the preparation of 5 and 6 and M. Shamma and C.D. Jones, J. Am. Chem. Soc., 1970, 92, 4943 for the preparation of compounds 7 and 8. The 90 MHz NMR spectra of these compounds were run in CDCl3 in a Bruker Spectrospin NMR instrument and chemical shifts are quoted in ppm downfield from TMS used as internal reference.
- T. Kametani, K. Fukumoto, M. Ihara, A. Ujiie and H. Koizumi,
 J. Org. Chem., 1975, 40, 3280.
- B.R. Pai, K. Nagarajan, H. Suguna and S. Natarajan,
 Heterocycles, 1977, 6, 1377; T.R. Govindachari, B.R. Pai,
 H. Suguna and M.S. Premila, Heterocycles, 1977, 6, 1811.

Received, 16th May, 1978