STUDIES IN PROTOBERBERINE ALKALOIDS. XVI¹. NMR SPECTRAL STUDIES OF 10.11-DIOXYGENATED 13-METHYLTETRAHYDROPROTOBERBERINES Bantwal R. Pai*, Kuppuswamy Nagarajan, Hosbett Suguna and Sankaran Netarajan Department of Chemistry, Presidency College, Madras-5, India The NMR chemical shift differences of protons at C_{13a} and C_8 and the methyl protons at C_{13} of <u>cis-</u> and <u>trans-fused</u> 10,11-dioxygenated 13-methyltetrahydroprotoberberines are discussed. The relative stereochemistry of 13-methyltetrahydroprotoberberines has been established by a study of their NMR spectra 2,3,4 . The chemical shift of the C_{13} -CH $_3$ group in compounds with trans-fused rings 8/C and a cis-orientation of protons at C_{13} and C_{13a} is between δ 0.90-1.00 while it is near δ 1.40-1.50 in those with cis-fused rings 8/C and a trans-orienta ion of the protons. It has also been observed that in the NMR spectra of trans-fused 9,10-dioxygenated 13-methyltetra-hydroprotoberberines the C_8 -protons appear as an A8 quartet with a large chemical shift difference, while in the corresponding cis quinolizidines the shift difference is smaller 3,4 . No mention however has been made about 10,11-dioxygenated 13-methyltetrahydroprotoberberines. Recently Cushman at al. 5 have pointed out that the C_8 protons of the 8/C cis-fused 10,11-dioxygenated tetrahydroprotoberberine $\underline{1}$ appeared as two doublets (J=16 Hz) at δ 3.73 and 4.22, with the higher field doublet overlapping the signal for C_{13a} proton. In contrast, the C_8 protons of $\underline{2}$ (trans-quinolizidine) were assigned to a broad singlet which appeared at δ 3.72. Our study of the 90 MHz NMR spectra of compounds 3 to 8 (Table I) shows that in the 10,11-dioxygenated 13-methyltetrahydro-protoberberines the C₈ protons are observed as an AB quartet in all cases irrespective of whether the 8/C ring fusion is cis or trans⁶. A scrutiny of the data in Table I and Table II leads to the further conclusion that the centre of the AB quartet appears relatively further downfield in all cases of cis-quinolizidines compared to the trans-quinolizidines by about 0.15-0.20 ppm . In the 10,11-dioxygenated compounds the signals of the C₈ protons are separated from each other by about 0.45-0.48 ppm in the cis and 0.40-0.48 ppm in the trans-quinolizidines, while the corresponding values in 9,10-oxygenated compounds are 0.13-0.18 and 0.55-0.72. The difference is somewhat smaller (0.07 ppm) for compounds 7 & 8. $$R_1$$ R_1 R_2 R_3 R_4 R_4 R_4 R_5 R_5 R_5 R_5 R_5 R_6 R_6 R_7 R_8 $$3 R_1 = CH_3; R_2 + R_2 = CH_2$$ $$5 R_1 + R_1 = R_2 + R_2 = CH_2$$ $$7 R_1 = CH_3; R_2 = H$$ $$\frac{4}{1}$$ R₁ = CH₃; R₂+R₂ = CH₂ $$6 R_1 + R_1 = R_2 + R_2 = CH_2$$ $$8 R_1 = EH_3; R_2 = H$$ $$g \cdot R_1 = R_2 = CH_3$$ (Meso corydaline) $$\frac{11}{1} \quad \begin{array}{l} R_1 = CH_3; \quad R_2 + R_2 = CH_2 \\ \text{(Thalictrifoline)} \end{array}$$ $$\begin{array}{ccc} 10 & R_1 = R_2 = CH_3 \\ & \text{(Corydaline)} \end{array}$$ $$R_1 = CH_3; R_2 + R_2 = CH_2$$ (Cavidine) $$\frac{14}{\text{(Thalictricevine)}} R_1 + R_1 = CH_2; R_2 = CH_3$$ Another point worth mentioning is the chemical shift of the angular proton at C_{13a} . Kametani and coworkers have studied the NMR spectra of a number of 1-substituted tetrahydroprotoberberines and have shown that the angular proton of a <u>trans</u>-quinolizidine resonates upfield from δ 3.80, whereas in the case of a <u>cis</u>-quinolizidine this signal is observed downfield from δ 3.80. This observation was also made in the NMR spectra of caseadine (in CDCl₃ as well as in C_6D_6)8. This does not seem to be the case for 13-methyltetrahydroprotoberberines. The tables show that the C_{13a} proton in these compounds generally appears around δ 3.70. Noteworthy is the fact that in each pair the C_{13a} proton of the <u>trans</u>-quinolizidine appears at lower field than in the corresponding cis-quinolizidine. The most consistent and dramatic differences between the <u>cis</u>-and <u>trans</u>-quinolizidine series are seen only for the chemical shifts of the methyl groups at C_{13} . Thus the values range from δ 1.43 to 1.48 for the <u>cis</u>- and from δ 0.88 to 0.99 for the <u>trans</u>-series, showing a difference of about 0.5 ppm. Based on these observations we conclude that the assignment of stereochemistry of the B/C ring fusion in 10,11-dioxygenated 13-methyltetrahydroprotoberberines should be made on the basis of the chemical shifts of the C_{13} methyl doublets only, which could be further strengthened by an inspection of the chemical shifts for the C_8 protons. Table I NMR Chemical Shifts $(6, \ \mathsf{ppm})$ of $10,11-\mathsf{Dio}\mathsf{xygenated}$ $13-\mathsf{Methyltetrahydroprotoberberines}$ | COMPOUND | C ₈ -Proton | Centre of
AB quartet due
to C _B -proton | C _{13a} -H | С13-СН3 | Remark | |-------------|-------------------------|--|-----------------------|------------------|----------| | ←l | 3.73, 4.22 | 3,98 | 3.67
(J=8 Hz) | 1.48 | cd | | 1 10 | 3.72
(broad singlet) | 3.72 | 3.88 | 26*0 | σ | | က | 3.75, 4.23
(J=15 Hz) | 3.99 | 3.75(d)
(J=8 Hz) | 1.49
(J=7 Hz) | Д | | 41 | 3.62, 4.02
(J=15 Hz) | 3+80 | 3.78(d)
(3=2-3 Hz) | 0.99
(3=7 Hz) | ۵ | | ភ | 3.72, 4.17
(J=15 Hz) | 3+95 | 3.69(d)
(J=8 Hz) | 1.45
(3=7 Hz) | م | | ol | 3.56, 3.96
(Jm15 Hz) | 3.76 | 3.70(d)
(3=2-3 Hz) | 0.96
(J=7 Hz) | ۵ | | 7 | 3.63, 4.09
(J≖15 Hz) | 3,86 | 3.59(d)
(J=8 Hz) | 1.43
(J=7 Hz) | Ω | | ထ။ | 3,55, 4,03
(J=15 Hz) | 3,79 | 3.78
(J#√2 Hz) | 0.88
(3=7 Hz) | ۵ | 90 MHz NMR spectrum run in ${ m CDCl}_3$, ${ m ref.6}$ a Data reported by Cushman et al., ref.5; Table II | | rberines | Ref. | м | ဗ | ະດ | ស | 4 | 4 | |---------|--|--|--------------------|--------------------|--------------------|--------|------------|------------| | | NMR Chemical Shifts (5, ppm) of 9,10—Dioxygenated 13-Methyltetrahydroprotoberberines | C ₁₃ -CH ₃ | 1.48 | 0.97 | 1.48 | 0.98 | 1,43 | 0.93 | | 77 0705 | | С _{13а} -н | 3.62
(J=7.5 Hz) | 3.58
(J#3.0 Hz) | 3.68
(J≈7.5 Hz) | 3.74 | 3.56 | 3.66 | | | f 9,10-Dioxygenated | Centre of
AB quartet due
to C ₈ -proton | 4.05 | 3.84 | 3.96 | 3,80 | 3.99 | 3.80 | | | s (6 , ppm) c | C ₈ -Proton | 3.97, 4.13 | 3,49, 4,19 | , 4.02 | , 4.07 | 3,90, 4,08 | 3.44, 4.16 | | | Shift | 18
18 | 3.97 | 3.49 | 3.89, | 3,52, | 3,90 | 3,44 | | | NMR Chemical | COMPOUND | 6 | 티 | 티 | 12 | 13 | 14 | ## Acknowledgement We are very grateful to Professor Maurice Shamma for providing us with samples of compounds 7 and 8 and for his helpful suggestions. H.S. and S.N. thank 'Amrutanjan Limited, Madras-4, India' for financial assistance. ## References and Notes - 1 For Part XV see B.R. Pai, S. Natarajan, H. Suguna and G. Manikumar, J. Grg. Chem., 1978, 43, 1994 - 2 M. Shamma, C.D. Jones and J.A. Weiss, Tetrahedron, 1969, 25, 4347 - 3 C.-K. Yu, D.B. MacLean, R.G.A. Rodrigo and R.H.F. Manske, Canad. J. Chem., 1970, 48, 3673. - 4 T.R. Govindachari, K. Nagarajan, R. Charubala, B.R. Pai and P.S. Subramanian, Indian J. Chem., 1970, 8, 769. - 5 M. Cushman, J. Gentry and F.W. Dekow, <u>J. Org. Chem.</u>, 1977, <u>42</u>, 1111. - and T.R. Govindachari, K. Nagarajan, S. Natarajan and B.R. Pai, Indian J. Chem., 1971, 9, 1313 for the preparation of 5 and 6 and M. Shamma and C.D. Jones, J. Am. Chem. Soc., 1970, 92, 4943 for the preparation of compounds 7 and 8. The 90 MHz NMR spectra of these compounds were run in CDCl3 in a Bruker Spectrospin NMR instrument and chemical shifts are quoted in ppm downfield from TMS used as internal reference. - T. Kametani, K. Fukumoto, M. Ihara, A. Ujiie and H. Koizumi, J. Org. Chem., 1975, 40, 3280. - B.R. Pai, K. Nagarajan, H. Suguna and S. Natarajan, Heterocycles, 1977, 6, 1377; T.R. Govindachari, B.R. Pai, H. Suguna and M.S. Premila, Heterocycles, 1977, 6, 1811. Received, 16th May, 1978