OXIDATIVE CYCLIZATION OF 2-UNSATURATED 1,4-DIOXIMES

A<u>kio</u> O<u>hsawa</u>, H<u>eihachiro</u> A<u>rai</u> and H<u>iroshi</u> I<u>geta</u> School of Pharmaceutical Sciences, Showa University, Shinagawa-ku, Tokyo 142, Japan

The major product of the oxidation of 1,4-diphenyl-2-butene-1,4-dioxime(4c) with phenyliodoso bistrifluoroacetate(PITFA) was 3,6-diphenyl-dihydroisoxazoloisoxazole(2c) which had been incorrectly assigned to the 3,6-diphenylpyridazine dioxide(1c) by other authors. Lead tetraacetate was found to be more applicable reagent than PITFA for the preparation of dioxides(1) from 2-unsaturated 1,4dioximes.

In the previous paper,¹ we have reported that the photoisomerization of pyridazine 1,2-dioxides(1) afforded 3a,6adihydroisoxazolo[5,4-d]isoxazoles(2) of a novel ring system, and bis-iminoxyl radicals(3) were posturated as the intermediates in the reaction.

If radicals(3) are the intermediate of the compounds(2), dioximes(4) might be transformed into 2 by the oxidation under appropriate conditions, because oximes are known to generate iminoxyl radicals by oxidation.²⁻⁴

—1367—

In this respect, Spyroudis <u>et al</u>.⁵ have reported that the oxidation of dioximes of hexa-3-ene-2,5-dione(4a, $R^1=R^2=Me$) and 1,4-diary1-2-butene-1,4-diones(4, $R^1=Ar$, $R^2=Ar'$) with pheny1-

iodoso bis-trifluoroacetate(PITFA) afforded the pyridazine dioxides(1).

This paper describes the novel results of the oxidation of 4 with PITFA. The results are shown in the table on the next page.

When 4a was treated with ceric ammonium nitrate(CAN, 1.2 molar eq.), small amounts of 3-methyl-5-acetylisoxazole⁶ [5a, mp.73-75°(75-76°),⁷ NMR(δ): 2.42(3H,s), 2.63(3H,s), and 6.77(1H,s), IR(KBr): 1580 and 1690 cm⁻¹], 2,5-dinitrohexa-2,4-

4 <u>[0]</u>	$\rightarrow \begin{array}{c} R^{1} \overbrace{N-N}^{N-N} - R^{2} \\ \downarrow \\ 0 & 0 \\ 1 \\ \vdots \end{array}$		$\sim R^2$	N O	≪ ^{R¹} 5	02N R2	^{R¹} NO ₂		о _R 1 н <u>7</u>
Tal	ble (The yields	are show	R ² n <u>in</u> %.)	a)				^{R¹} ^I ≁0 9	
Dioximes	Oxidation	1,	2	,5	6	2		9	4(recov.)
$4a$, $R^1 = R^2 = Me$	CAN/aq.AcOH	0	0	3	10	6	c)	<u>c</u>)	0
	LTA/CH ₂ C1 ₂	33	8	trace	11	0	c)	<u>c</u>)	0
	PITFA/CH ₂ C1 ₂	15(10) ^{b)}	5	0	2	0	c)	<u>c</u>)	0
$\underbrace{4b}, R^1 = Me, R^2 = Ph$	LTA/CH ₂ Cl ₂	19	10	3	<u> </u>	c)	trace	¢)	0
$4c$, $R^1 = R^2 = Ph$	CAN/aq.AcOH	0	8	<u> </u>	trace	<u> </u>	trace	trace	50 [°]
-	LTA/CH ₂ C1 ₂	15	60	<u>(c</u>)	2 -	c)	trace	trace	0
· ·	PITFA/CH ₂ C1 ₂	0	51(55) ^{b)}	<u> </u>	6	c)	3	trace	0

a) at room temperature for 1-2 hr, for all runs

b) Spyroudis <u>et al</u>., see footnote 5

c) All attempts to isolate these compounds have been failed although the formation of these compounds can not be denied.

-1369--

HETEROCYCLES, Vol. 9, No. 10, 1978

diene [6a, mp.160-161°(165-166°), ⁸ NMR(δ): 2.45(6H,s) and 7.70 (2H,s), IR(KBr); 1330 and 1520cm⁻¹], and monooxime⁹[7a,mp.109-111°, NMR(δ): 2.05(3H,s), 2.33(3H,s), 6.42(1H,d,J=17Hz), and 7.21(1H,d,J=17Hz), IR(KBr): 1620 and 1675cm⁻¹] were isolated from the reaction mixture(silica gel chromatography).

When lead tetraacetate(LTA, 1.5 molar eq.) was used as an oxidizing reagent, 4a was transformed into $2a^{10}$ [mp.95-96°, NMR(δ): 2.10(6H,s) and 5.75(2H,s), IR(KBr): 900, 1040,1325, 1400 and 1440cm⁻¹], together with $1a^{11}$ [mp.215-216°, NMR(δ):2.53 (6H,s) and 6.95(2H,s), IR(KBr): 840, 1395 and 1480cm⁻¹, MS(<u>m/e</u>): 140(M⁺), 124(M⁺-0), 110(M⁺-NO), 82 and 79], 5a and 6a.

The oxidation of 4a with PITFA(1.3 molar eq.) also yielded 2a, besides 1a and 6a. Similarly, $2b^{10}$ [mp.102-103°, NMR(δ): 2.10(3H,s), 5.88(1H,d,J=9.8Hz), 6.23(1H,d,J=9.8Hz), 7.35-7.55 (3H,m) and 7.70-7.90(2H,m), IR(KBr): 900, 1030, 1325, 1360 and 1440cm⁻¹] was obtained by the oxidation of 4b with LTA.

Moreover, 1b [mp.181-182°, NMR(δ): 2.55(3H,s), 7.10(2H,br,s), 7.40-7.60(3H,m) and 7.70-7.95(2H,m), IR(KBr): 840, 1400 and 1480cm⁻¹, MS(<u>m/e</u>): 202(M⁺), 186(M⁺-0), 172(M⁺-NO), 144 and 115], 5b¹³ [mp.95-96°, NMR(δ): 2.64(3H,s), 7.28(1H,s), 7.40-7.60(3H,m) and 7.73-7.95(2H,m), IR(KBr): 1700cm⁻¹], and trace of 8b¹⁴ [bp. <u>ca</u>.70°/1mmHg, NMR(δ): 6.67(1H,d,J=1.8Hz), 7.40-7.65(3H,m), 7.78-7.95(2H,m), 8.48(1H,d,J=1.8Hz), IR(KBr): 765, 880 and 1440cm⁻¹] were isolated from the reaction mixture.¹⁵

Further, the oxidation of $\underbrace{4c}$ with LTA yielded a major product(60%) [A, mp.176-177°, NMR(δ): 6.45(2H,s), 7.30-7.65(6H, m) and 7.70-7.95(4H,m), IR(Nujor): 900, 1000 and 1343cm⁻¹] and a minor product(15%) [B, mp.258°(dec.), NMR(δ): 7.40-7.66(6H+2H,m), 7.85-8.00(4H,m), IR(KBr): 825, 1350, 1398 and 1460 cm^{-1} , MS(<u>m/e</u>): 264(M⁺), 248(M⁺-O), 234(M⁺-NO), 206, 128 and 102]. The melting point and the spectral data of the compound <u>A</u> are essentially identical with those of 3,6-diphenylpyridazine 1,2-dioxide(1c).⁵

However, the IR absorption of <u>A</u> at 900 and 1343 cm⁻¹ are not necessarily assigned to the N-oxide stretching because all <u>2</u> showed the absorptions of medium strength in the similar regions.

And, in the NMR spectra, the signal at $\int 6.45$ (which had been assigned to the pyridazine ring protons of 1c) was observed in abnormally high field compared to those of the protons on the C-4 and C-5 of other pyridazine 1,2-dioxides, because those of 1a and 1b appeared at $\int 6.95$ and 7.10, respectively.

Moreover, the mass spectra of \underline{A} showed strong ion peaks at $\underline{m/e} \ 264(M^+)$, $145(M^+-PhCNO)$ and $119(PhCNO^+)$.⁵ This type of the fragmentation is characteristic of compounds $\underline{2}^{1}$, 17 and not common as for $\underline{1}$.¹⁸ Thus, the data obtained from the compound \underline{A}_{\ldots} do not agree with the dioxide lc.

On the other hand, the catalytic reduction(on Pd-C) of compound <u>B</u>yielded 3,6-diphenylpyridazine 1-oxide(major) and 3,6-diphenylpyridazine(minor).²² This fact shows that the compound <u>B</u> must be the 1,2-dioxide(1c), and the spectral data for <u>B</u> well agree with this conclusion. Additionally, 6c[mp. 222-223°(219-221°),¹⁹ NMR(d): 7.30-7.68(m), IR(KBr): 1500 and 1320cm⁻¹], <u>8c(=8b)</u>, and <u>9c</u>[mp.113°(115°),²⁰ NMR(d): 7.55-7.70(m)] were obtained as the minor products by the LTA oxidation of <u>4c</u>.²¹ The oxidation of <u>4c</u> with CAN or PITFA also gave 2c, 6c, 8c and 9c although 1c was not obtained.

-1371-

Thus, present data show that the oxidation of $\underbrace{4}$ yields $\underbrace{2}$ as a result of the double cyclization together with the formation of 1, and that the oxidation of 4 with PITFA is not a favourable method for the preparation of 3,6-diarylpyridazine 1,2-dioxides. Additionally, LTA could be better oxidizing reagent than PITFA for the preparation of pyridazine 1,2-dioxides from $\underbrace{4}$.²²

FOOTNOTES

1) H.Arai, A.Ohsawa, K.Saiki, H.Igeta, A.Tsuji, T.Akimoto, and Y.Iitaka, <u>J.C.S.Chem.Commun.</u>, 1977,856.

2) R.N.Butler,"Synthetic Reagents"(J.S.Pizey Ed.), Vol.3, pp277, J.Wiley & Sons, N.Y.(1977).

3) R.N.Butler, F.L.Scott, and T.A.F.O'Mahony, <u>Chem.Revs</u>., <u>73</u>, 93(1973).

4) J.L.Brokenshire, J.R.Roberts, and K.U.Ingold, <u>J.Amer.Chem.</u> Soc., <u>94</u>,7040(1972).

5) S.Spyroudis and A.Varvoglis, <u>Synthesis</u>, 1976, 837.

6) Acetylisoxazole(5a) may be produced from the oxidation of its oxime(but not from 7a; 7a gave diketone instead of 5a by the oxidation under similar conditions) because it is known that oximes give ketones by the oxidation.^{2,3}

7) A.Quilico, L.Panizzi, and C.Epifani, <u>Gazz.Chim.Ital.</u>, <u>69</u>, 536(1939),<u>C.A.34</u>,1316.

8) J.A.Durden Jr., D.L.Heywood, A.A.Sousa, and H.W.Spurr, J.Agr.Food Chem., 18,50(1970), <u>C.A.72</u>,63929s.

9) Ketooxime(7a) might be produced by the oxidative deiminoxylation of 4a, see footnote 6.

10) Dihydroisoxazoloisoxazoles ($\underline{2a}$ and $\underline{2b}$) were identified with the authentic samples which have been obtained from the photolyses of the corresponding pyridazine 1,2-dioxides.^{1,17} 11) Dioxides(1a and 1b) were identified with the authentic samples which were obtained from the oxidation of corresponding pyridazines with 90% H₂O₂.¹² 12) M.Nakadate, S.Sueyoshi, and I.Suzuki, Chem.Pharm.Bull., 18, 1211(1970), <u>Tetrahedron Letters</u>, 1968,1855. $\widetilde{13}$) 3-Methyl-5-benzoylisoxazole(5, R¹=Ph, R²=Me) has not been isolated despite of attempts, so far. 14) G.Bianchi and P.Grünanger, <u>Tetrahedron</u>, 21,817(1965). 15) 3-Methylisoxazole(8, R²=Me) has not been isolated, see footnote c in the table. 16) Thus, the structures of 2 have been incorrectly assigned twice, once to 1,4,6,7-dioxadiazocin($\mathbb{R}^1, \mathbb{R}^2=H$ or Me) by the authors, 1^{7} and once to pyridazine 1,2-dioxides(R^{1} , R^{2} =Ar) by Spyroudis et al. 5 because of the tricky spectral characters of these compounds. 17) H.Arai, A.Ohsawa, K.Saiki, and H.Igeta, J.C.S.Chem.Commun., 1977, 133. 18) The common fragment ions of pyridazine 1,2-dioxides are M^+ -16(0), M^+ -30(NO) and M^+ -58(C₂H₂O₂?), 19) E.S.Lipina, V.V.Perekalin, and Y.S.Bobovich, Zh.Obshch. Khim., 34, 3640(1964), C.A.62,8989h. 20) J.H.Boyer and U.Toggweiler, J.Amer.Chem.Soc., 79,895(1957). 21) The compounds (8c and 9c) could be produced by the following mechanism:

22) The oxidation of 3,6-diarylpyridazines using 90% H_2O_2 did not yield the practical amounts of 1,2-dioxides.

Received, 24th June, 1978