OXIDATIVE CYCLIZATION OF 2-UNSATURATED 1,4-DIOXIMES

* OXIDATIVE CYCLIZATION OF 2-UNSATURATED 1,4-DIOXIMES
Akio Ohsawa, Heihachiro Arai and Hiroshi Igeta^{*} School of Pharmaceutical Sciences, Showa University, Shinagawa-ku, Tokyo 142, Japan

The major product of the oxidation of 1,4-dipheny1-2-butene-1,4-dioxime(4c) with phenyliodoso bistrif luoroacetate(P1TFA) was 3 ,6-diphenyl-dihydro $isoxazoloisoxazole(2c)$ which had been incorrectly assigned to the $3,6$ -diphenylpyridazine dioxide(1c) by other authors. Lead tetraacetate was found to be more applicable reagent than PITFA for the preparation of dioxides(1) from 2-unsaturated $1,4$ dioximes .

In the previous paper,¹ we have reported that the photoisomerization of pyridazine 1,2-dioxides(1) afforded 3a,6a**dihydroisoxazolo[5,4-d]isoxazoles(2)** of a novel ring system, and bis-iminoxyl radicals(3) were posturated as the intermediates in the reaction.

If radicals(3) are the intermediate of the compounds (2) , dioximes(4) might be transformed into 2 , by the oxidation under appropriate conditions, because oximes are known to generate iminoxyl radicals by oxidation. $2-4$

In this respect, Spyroudis $\underline{\text{et}}$ $\underline{\text{al}}$.⁵ have reported that the oxidation of dioximes of hexa-3-ene-2,5-dione($4a$, $R^1 = R^2 = Me$) and $1, 4$ -diary¹-2-butene-1,4-diones $(4, R^1=Ar, R^2=Ar')$ with pheny¹-

iodoso **bis-trifluoroacetate(P1TFA)** afforded the pyridazine dioxides (I).

This paper describes the novel results of the oxidation of $\frac{4}{3}$ with PITFA. The results are shown in the table on the next page.

When $4a$ was treated with ceric ammonium nitrate(CAN, 1.2 molar eq.), small amounts of 3 -methyl-5-acetylisoxazole⁶ $[5a, mp.73-75°(75-76°),⁷ NMR(\delta): 2.42(3H,s), 2.63(3H,s), and$ 6.77(1H,s), $IR(KBr): 1580$ and 1690 cm^{-1}], 2,5-dinitrohexa-2,4-

at room temperature for 1-2 hr, for all runs $\frac{Q}{P}$

c) All attempts to isolate these compounds have been failed although the formation of these compounds can not be denied.

-1369-

8 0, **2** \leq

diene[6a, mp.160-161°(165-166°),⁸ NMR(δ): 2.45(6H,s) and 7.70 $(2H,s)$, IR(KBr); 1330 and 1520cm⁻¹], and monooxime⁹[7a,mp.109-111°, NMR(δ): 2.05(3H,s), 2.33(3H,s), 6.42(1H,d,J=17Hz), and 7.21(1H, d, $J=17Hz$), IR(KBr): 1620 and 1675cm⁻¹] were isolated from the reaction mixture(si1ica gel chromatography).

When lead tetraacetate(LTA, 1.5 molar eq.) was used as an oxidizing reagent, 4a was transformed into $2a^{10}$ [mp.95-96°, $NMR(\delta): 2.10(6H,s)$ and $5.75(2H,s)$, $IR(KBr): 900$, $1040,1325$, 1400 and 1440cm⁻¹], together with $1a^{11}[mp.215-216^{\circ}, NMR(\delta) :2.53^{\circ}]$ (6H,s) and 6.95(2H,s), IR(KBr): 840, 1395 and 1480cm^{-1} , MS(m/e): $140(M^{*})$, $124(M^{*}-0)$, $110(M^{*}-NO)$, 82 and 79], 5a and 6a.

The oxidation of $4a$ with PITFA(1.3 molar eq.) also yielded 2a, besides la and $6a$. Similarly, $2b^{10}$ [mp.102-103°, NMR(d): 2.10(3H,s), 5.88(1H,d,J=9.8Hz), 6.23(1H,d,J=9.8Hz), 7.35-7.55 (3H,m) and 7.70-7.90(2H,m), IR(KBr): 900, 1030, 1325, 1360 and 1440cm-l] was obtained by the oxidation of **4J** with LTA.

Moreover, $1b$ [mp. 181-182°, NMR(δ): 2.55(3H,s), 7.10 (2H,br,s), 7.40-7.60(3H,m) and 7.70-7.95(2H,m), IR(KBr): 840, 1400 and 1480cm^{-1} , $MS(m/e): 202(M^+), 186(M^+ - 0), 172(M^+ - NO), 144$ and $115]$, $5b^{13}$ [mp.95-96°, NMR(f): 2.64(3H,s), 7.28(1H,s), 7.40-7.60(3H,m) and 7.73-7.95(2H,m), $IR(KBr): 1700cm^{-1}$], and trace of $9b^{14}$ [bp. ca.70°/1mmHg, NMR(d): 6.67(1H,d,J=1.8Hz), 7.40-7.65(3H,m), 7.78-7.95(2H,m), 8.48(1H,d,J=1.8Hz), IR(KBr): 765, 880 and 1440 cm^{-1}] were isolated from the reaction mixture.¹⁵

Further, the oxidation of $4c$ with LTA yielded a major product(60%) [A, mp.176-177°, NMR(δ): 6.45(2H,s), 7.30-7.65(6H, m) and 7.70-7.95(4H,m), IR(Nujor): 900, 1000 and 1343cm⁻¹] and a minor product(15%) [B, mp. 258° (dec.), $NMR(\tilde{J})$: 7.40-7.66(6H+2H,m),

7.85-8.00(4H,m), IR(KBr): 825, 1350, 1398 and 1460cm^{-1} , MS(m/e): $264 (M^{+})$, $248 (M^{+}-0)$, $234 (M^{+}-NO)$, 206 , 128 and 102]. The melting point and the spectral data of the compound Aare essentially identical with those of $3,6$ -diphenylpyridazine 1,2-dioxide(1c).⁵

However, the IR absorption of A at 900 and 1343cm^{-1} are not necessarily assigned to the N-oxide stretching because all 2 showed the absorptions of medium strength in the similar regions.

And, in the NMR spectra, the signal at $\int 6.45$ (which had been assigned to the pyridazine ring protons of **lc)** was observed in abnormally high field compared to those of the protons on the C-4 and C-5 of other pyridazine 1,2-dioxides, because those of 1a and 1b appeared at $\sqrt{6.95}$ and 7.10, respectively.

Moreover, the mass spectra of A showed strong ion peaks at m/e 264(M⁺), 145(M⁺-PhCNO) and 119 (PhCNO⁺).⁵ This type of the fragmentation is characteristic of compounds 2^1 , 17 and not common as for $1.$ ¹⁸ Thus, the data obtained from the compound A do not agree with the dioxide 12.

On the other hand, the catalytic reduction(on Pd-C) of compound B yielded 3,6-diphenylpyridazine 1-oxide(major) and 3,6-diphenylpyridazine (minor).²² This fact shows that the
compound B must be the 1,2-dioxide(1c), and the spectral data for B well agree with this conclusion. Additionally, 6c[mp. $222 - 223^{\circ} (219 - 221^{\circ})$, 19 NMR(f): 7.30-7.68(m), IR(KBr): 1500 and 1320cm^{-1}], $8 \text{C}(-80)$, and $9 \text{C}[\text{mp}.113^{\circ}(115^{\circ}), \frac{20}{100} \text{NMR}(\delta) : 7.55$ -7.70 (m)] were obtained as the minor products by the LTA oxidation of 4c.²¹ The oxidation of 4c with CAN or PITFA also gave $2c$, $6c$, $8c$ and $9c$ although $1c$ was not obtained,

 $-1371-$

Thus, present data show that the oxidation of 4 yields 2 , as a result of the double cyclization together with the formation of 1, and that the oxidation of \mathcal{A} with PITFA is not a favourable method for the preparation of 3,6-diarylpyridazine 1,2-dioxides. Additionally, LTA could be better oxidizing reagent than PITFA for the preparation of pyridazine 1,2-dioxides from 4 ²²

FOOTNOTES

1) H.Arai, A.Ohsawa, K.Saiki, H.Igeta, A.Tsuji, T.Akimoto, and Y.Iitaka, J.C.S.Chem.Commun., 1977,856.

2) R.N.Butler,"Synthetic Reagents"(J.S.Pizey Ed.), Vol.3, pp277, J.Wiley & Sons, N.Y.(1977).

3) R.N.Butler, F.L.Scott, and T.A.F.O'Mahony, Chem.Revs., 73, 93(1973).

4) J.L.Brokenshire, J.R.Roberts, and K.U.Ingold, 3.Amer.Chem. $Soc., 94,7040 (1972).$

5) S.Spyroudis and A.Varvoglis, Synthesis, 1976, 837.

6) Acetylisoxazole($\{a\}$ may be produced from the oxidation of its o xime(but not from $7a$; $7a$ gave diketone instead of $5a$ by the oxidation under similar conditions) because it is known that oximes give ketones by the oxidation.^{2,3}

7) A.Quilico, L.Panizzi, and C.Epifani, Gazz.Chim.Ital., 69, 536(1939), C.A. 34, 1316.

8) J.A.Durden Jr., D.L.Heywood, A.A.Sousa, and H.W.Spurr, $J.Agr.Food Chem.$, $18,50(1970)$, $C.A.72,63929s.$

9) Ketooxime($7a$) might be produced by the oxidative

deiminoxylation of 4a, see footnote 6.
10) Dihydroisoxazoloisoxazoles(2a and 2b) were identified with the authentic samples which have been obtained from the photolyses of the corresponding pyridazine $1,2$ -dioxides.^{1,17}

11) Dioxides(1a and 1b) were identified with the authentic samples which were obtained from the oxidation of corresponding pyridazines with 90% H_2O_2 .¹² 12) M.Nakadate, S.Sueyoshi, and I.Suzuki, Chem.Pharm.Bull., 18, 1211(1970), Tetrahedron Letters, 1968,1855. 13) $3-Methyl-5-benzoylisoxazole(5, R¹=Ph, R²=Me)$ has not been isolated despite of attempts, so far. 14) G.Bianchi and P.Grünanger, Tetrahedron, 21,817(1965). 15) 3-Methylisoxazole($8, R^2$ =Me) has not been isolated, see footnote c in the table. 16) Thus, the structures of 2 have been incorrectly assigned twice, once to $1,4,6,7$ -dioxadiazocin(R^1, R^2 =H or Me) by the authors, 17 and once to pyridazine 1, 2-dioxides $(R^1, R^2=Ar)$ by Spyroudis et al .⁵ because of the tricky spectral characters of these compounds. 17) H.Arai, A.Ohsawa, K.Saiki, and H.Igeta, J.C.S.Chem.Commun., 1977, 133. 18) The common fragment ions of pyridazine 1,2-dioxides are M^+ -16(0), M^+ -30(NO) and M^+ -58(C₂H₂O₂?), 19) E.S.Lipina, V.V.Perekalin, and Y.S.Bobovich, Zh.Obshch. 1977, 133.

18) The common fragment ions of pyridazine 1,2-dioxides

are M⁺-16(0), M⁺-30(NO) and M⁺-58(C₂H₂O₂?),

19) E.S.Lipina, V.V.Perekalin, and Y.S.Bobovich, <u>Zh.Obshch.

<u>Khim</u>., 34, 3640(1964), C.A.62,89</u> following mechanism: could be produced by the
 $\begin{array}{ccc}\n\text{PhCN} \rightarrow \text{O} & \xrightarrow{\text{O}} & \text{O} \\
\downarrow & \times 2 & \xrightarrow{\text{O}} & \xrightarrow{\text{O}} & \text{O}\n\end{array}$

22) The oxidation of 3,6-diarylpyridazines using 90% H_2O_2 did not yield the practical amounts of 1,2-dioxides.

Received, 24th June, 1978