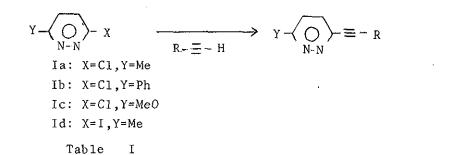
ALKYNYLATION OF HALOPYRIDAZINES AND THEIR N-OXIDES USING Pd-PHOSPHINE COMPLEX

Y<u>oshihito</u> Abe, Akio O<u>hsawa</u>, H<u>eihachiro</u> <u>Arai</u> and Hiroshi Igeta*

<u>School of Pharmaceutical Sciences</u>, <u>Showa University</u>, Shinagawa-ku, Tokyo 142, Japan

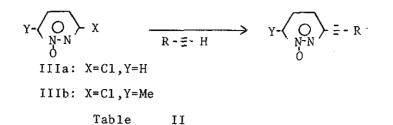
3-Alkynylpyridazines and their l-oxides were synthesized from 3-chloropyridazines and their l-oxides, respectively, by the modification of the original method for the alkynylation of aryl iodides using $[Pd(PPh_3)_2Cl_2-CuI]$ and Et_2NH (Sonogashira's method). The N-oxidation of 3-alkynylpyridazines occured exclusively at the nitrogen atom in the l-position.


Recently, Sonogashira <u>et al</u>.¹ found that iodobenzene was transformed into alkynylbenzenes by the reaction with monosubstituted acetylenes in the presence of $[Pd(PPh_3)_2Cl_2$ -CuI] and large excess of diethylamine at room temperature. And Edo <u>et al</u>. applied this reaction to the alkynylation of iodopyrimidines.

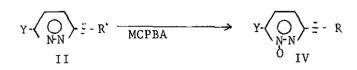
Although wide applications of alkynylpyridazines and their N-oxides are expected, the direct introduction of the alkynyl group into the pyridazine ring has not been reported. We wish to describe that the improved conditions of this reaction enabled 3-chloropyridazines(Ia-c) and their 1-oxides (III), which are much more readily prepared than the corresponding iodo derivatives, to be substituted by alkynyl groups.

First, we tried the alkynylatin of 3-iodopyridazines according to the reported procedures.^{1,2} For example, the mixture of 3-iodo-6-methylpyridazine(Id,1.lg,5mmol), phenylacetylene(0.6g,5.5mmol), $Pd(PPh_3)_2Cl_2(37mg,0.05mmol)$, CuI (5mg,0.025mmol) and $Et_2NH(30m1,as \ solvent)$ was stirred for 15hr at room temperature. The yield of 3-phenylethynyl-6methylpyridazine(IIa,R=Ph,Y=Me) was only 0.29g(30%), and 0.66g(60%) of Id was recovered. Also, the alkynylation of 3-chloro-6-methylpyridazine(Ia) with phenylacetylene under the same conditions was attempted, while the yield of IIa was 9%. Next, in order to remove the difficulties in the alkynylation of 3-chloropyridazines, some attempts were made.

The alkynylation of Ia-c proceeded fairly successfully when the amount of Et_2NH was far reduced compared with former procedure and the mixture was heated. For example, a mixture of Ia(1.3g,10mmol), phenylacetylene(2.4g,22mmol), Pd(PPh_3)₂Cl₂ (146mg,0.2mmol), CuI(10mg,0.05mmol) and Sml of Et_2NH was heated at 70° for 4hr. The yield of IIa was 1.1g(56%) without recovery of Ia. Other data of the alkynylation by this improved procedure are collected in Table I.


HETEROCYCLES, Vol.9, No.10, 1978

I	R	Conditions	II Y	ield(%	\$) mp(°C)
a	Ph	70°,4hr	$Me - \langle O \rangle = - Ph$	56	109-110
a	Bu	50°,12hr	Me - $\langle \bigcup_{N=N} \rangle$ - Ξ - Bu	90	bp ₅ 100
a	C(OH)Me ₂	70°,4hr	$Me - \langle O \rangle = \frac{Me}{OH} Me$	46	113-114
b	Ph	70°,4hr	$Ph - \langle \bigcup_{N \in \mathbb{N}} \rangle - \Xi - Ph$	78	170-171
с	Ph	70°,15hr	$MeO-\langle O_{N-N} \rangle = Ph$	59	98


Further, the modified procedure was applied to the alkynylation of 3-chloropyridazine 1-oxides(III), and the results were satisfactory(Table II).

-1399-

III	<u>R</u>	Conditions	IV	Yield(%)	mp(°C)
a	Ph	70°,4hr	$\langle \bigcup_{\substack{N-N\\0}} = Ph$	56	153-155
b	Ph	70°,16hr	$Me - \langle \bigcup_{\substack{NN \\ O}} \rangle \equiv -ph$	77	207-208
b	Bu	70°,15hr	Me $-\langle \bigcup_{\substack{N-N \\ O}} - \Xi - Bu$	24	58-60
b	C(OH)Me ₂	60°,4hr	$Me \rightarrow \bigvee_{N=N}^{Me} = 4 \xrightarrow{Me}_{OH} Me$	72	158-159

Additionally, the N-oxidation of 3-alkynylpyridazines was carried out. The products obtained from the oxidation of IIa (R=Ph,Y=Me) and IIb(R=Bu,Y=Me) with <u>m</u>-chloroperbenzoic acid were identical with IVa(R=Ph,Y=Me) and IVb(R=Bu,Y=Me), respectively. These facts show the oxidation of IIa and IIb proceeds exclusively at the nitrogen atom in the 1-position of the 3-alkynylpyridazines(Table III).

Table III

II	Y	R	IV	Yield(%)
a	Me	Ph	a	92
b	Me	Bu	b	64

References

 K. Sonogashira, Y. Tohda and N. Hagihara, <u>Tetrahedron</u> <u>Letters</u>, 1975, 4467.

2) K. Edo, H. Yamanaka and T.Sakamoto, <u>Heterocycles</u>, 9, 271 (1978).

Received, 3rd July, 1978