BASE-INDUCED REACTIONS OF N-METHYL QUATERNARY SALTS OF 1-AZA-DIBENZO[c,f]BICYCLO[3.3.1]NONA-3,6-DIENE AND RELATED COMPOUNDS

H<u>iroaki</u> T<u>akayama</u>, T<u>akashi</u> N<u>omoto</u>, and T<u>akayoshi</u> S<u>uzuki</u> Faculty of Pharmaceutical Sciences, Teikyo University, Suarashi, Sagamiko-machi, Tsukui-gun, Kanagawa-ken 199-01, Japan M<u>asayuki</u> T<u>akamoto</u> and T<u>oshihiko</u> O<u>kamoto</u>

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo 113, Japan

Reactions of N-methyl quaternary salt ($\underline{2}$) of 1-azadibenzo[c,f]bicyclo[3.3.1]nona-3,6-diene ($\underline{1}$) with various bases were examined, and consequently, 6-aza-6-methyldibenzo[b,i]bicyclo[3.2.2]nona-2,8diene ($\underline{4}$) was selectively obtained by the reaction of $\underline{2}$ with potassium t-butoxide in dioxane, in contrast 1-aza-1-methyl-5-methylenedibenzo[c,f]octa-3,6-diene ($\underline{3}$) was provided as a sole product by the reaction with potassium hydroxide in water, respectively. Isopavine alkaloids, ($\underline{1}$)-amurensinine and ($\underline{1}$)-reframine were also derived.

Previously, we reported¹ that N-methyl quaternary salts ($\underline{2}$,X= OH) of 1-azadibenzo[c,f]bicyclo[3.3.1]nona-3,6-diene ($\underline{1}$), which was facilely synthesized in high yield by the double-cyclization reaction of N,N-dibenzylaminoacetaldehyde diethylacetal, was derived to pharmacologically active 1-azadibenzo[c,f]octa-3,6-diene derivative ($\underline{3}$) by thermal degradation. In the course of our studies

-1545-

on the ring transformation of $\underline{1}$, we here wish to describe that $\underline{2}$ was converted into a basic skeleton of the isopavine alkaloids², namely, 6-aza-6-methyldibenzo[b,i]bicyclo[3.2.2]nona-2,8-diene ($\underline{4}$)³ in high isolated yield, by employing strong bases such as n-BuLi, t-BuOK, and NaH in rather aprotic solvents, whereas $\underline{3}$ was provided as a sole product by the reaction of $\underline{2}(X=CH_3SO_4)$ with a large excess of KOH in water at refluxing temperature(Scheme 1, Table I).

Table I	Reactions	of	N-Methyl	Quaternary	Salts	(<u>2</u>)	with	Bases
---------	-----------	----	----------	------------	-------	--------------	------	-------

		*~				Yield(%) *d	
<u></u> 2:	Х	Base "D	Solvent	Temp(°C)	Time(hr)	<u>3</u>	<u>4</u>
	OH ^{*a}	none	none	180	1/4	28	38
	CH_3SO_4	KOH ^{*C}	water	100	14	55	0
	CH3SO4	KOH ^{*C}	water/diglyme (1:2.5)	150	3	l	50
	I	n-BuLi	ether	-78~r.t.	16	0	66
	I	t-BuOK	dioxane	r.t.	42	3	64
	I	t-BuOK	diglyme	180	2/3	2	76
	I	t-BuOK	dioxane	80	4	l	85
	I	NaH diglyme		180	1	0	81
*a) See references 1), *b) 1.5 equiv. to 2, *c) 50 equiv to 2.							·

*a) see references 1). *b) 1.5 equiv. to 2. *c) 50 equiv. to 4. *d) The isolated yield shown was unoptimized.

In a typical experiment, compound 2(X=I)(1 mmol) in a solution of dioxane containing 1.5 equiv. of t-BuOK, was heated with stirring at 80°C for 4 hr under an argon atmosphere. After dilution with water, the reaction mixture was extracted with dichloromethane and the resulting solution was evaporated under a reduced pressure, the residue was chromatographed on a silica gel column affording $\underline{4}$, mp 60-62°C, in 85% yield. $\underline{4}$: Mass m/e 235(M⁺), 192 (M-(CH₃-N=CH₂)), 144(N-methylisoquinolinium ion)⁴, ¹H-NMR($\boldsymbol{5}$ in CDCl₃) 2.44(3H,s), 2.86(1H,dd,J=10.6, 5.0Hz), 2.94(1H,dd,J=17.5, 1.25Hz), 3.54(1H,dd,J=10.6, 1.25Hz), 3.58(1H,dd,J=17.5, 3.75Hz), 3.79(1H,dd,J=5.0, 1.25Hz), 3.89(1H,t,J=3.75Hz), ¹³C-NMR($\boldsymbol{5}$ in CDCl₃) 38.5(C₄,t), 45.3(N-CH₃,q), 46.9(C₁,d),59.6(C₇,t),62.6(C₅,d).

In an application of this modified Stevens rearrangement⁵, 5, prepared by the double-cyclization reaction of N-(3,4-dimethoxybenzyl)-N-(3,4-methylenedioxybenzyl)aminoacetaldehyde diethylacetal, in a dioxane solution containing 1.5 equiv. of t-BuOK was heated at 80°C for 4 hr and chromatographic separation gave $(\frac{1}{2})$ amurensinine ($\underline{6}$) and ($\underline{1}$)-reframine ($\underline{7}$) in 85% yield(1.8:1). $\underline{6}$: mp 192-194°C, Mass m/e 339(M⁺), 296(M-(CH₃-N=CH₂)), 188(N-methyl-6,7-methylenedioxyisoquinolinium ion)⁴, NMR(5 in CDCl₃) 2.48(3H, s), 2.70-3.04(2H,m), 3.36-3.70(4H,m), 3.77(3H,s), 3.86(3H,s), 5.85 (2H,ABq,J=4.0, 1.5Hz), 6.48(1H,s), 6.58(1H,s), 6.65(2H,s). 7:7 oil(methiodide, mp 262-263°C), Mass m/e 339(M⁺), 296(M-(CH₂-N=CH₂)), 204 (N-methyl-6,7-dimethoxyisoquinolium ion)⁴, NMR(5 in CDCl₂) 2.47 (3H,s), 2.8-3.04(2H,m), 3.44-3.80(4H,m), 3.86(6H,s), 5.85(2H,ABg, J=2.5, 1.0Hz), 6.45(1H,s), 6.59(1H,s), 6.68(1H,s), 6.71(1H,s). The spectroscopic data of the available natural products were identical with those of 6 and 7 respectively (Scheme 2).

In conclusion, the presented results suggest clearly that pharmacologically active type- $\underline{3}$ and type- $\underline{4}$ compounds can be selec-

tively synthesized from type-1 compounds.

Further studies along this line and the investigation on the reaction mechanism are in progress.

References and Notes

- H. Takayama, M. Takamoto, and T. Okamoto, <u>Tetrahedron Lett.</u>, 1978, 1307. The crystalline <u>2</u>(X=CH3SO4) was dissolved in H₂O and passed through OH⁻treated IRA-401 ion exchange column and the resultant aq. solution was concentrated to dryness under a reduced pressure at below 30°C, followed by a vacuum distillation (oil bath temp. 180°C/0.005 Torr) affording a mixture of <u>3</u>(28%) and <u>4</u>(38%). The yields were sensitive to the reaction procedure.
- 2) S. F. Dyke and A. C. Ellis, <u>Tetrahedron</u>, 1971, <u>27</u>, 3803 and the references. cited therein.
- <u>4</u> displayed various interesting pharmacological activities (unpublished result).
- 4) L. Dolejš and V. Hanuš, <u>Coll. Czech. Chem. Commun.</u>, 1968, <u>33</u>, 600;
 L. Dolejš and J. Slavík, <u>ibid.</u>, 1968, <u>33</u>, 3917.
- 5) S. H. Pine, J. Chem. Educ., 1971, 48, 99; W. D. Ollis, M. Rey, O. S. Sutherland, and G. L. Closs, J. Chem. Soc. Chem. Commun., 1975, 543 and the references cited therein.
- 6) F. Šantavý, L. Hruban, and M. Maturová, <u>Coll. Czech. Chem. Commun.</u>, 1966, <u>31</u>, 4286; <u>Idem</u>, <u>J. Chem. Soc. Chem. Commun.</u>, 1966, 36.
- J. Slavik, L. Slaviková, and L. Dolejš, <u>Coll. Czech. Chem. Commun.</u>, 1968, <u>33</u>, 4066.
- 8) Compounds $\underline{3}$, $\underline{4}$, $\underline{6}$, and $\underline{7}$ (methiodide) gave correct elemental analyses.

Received, 25th July, 1978