MULBERROFURAN A, A NEW ISOPRENOID 2-ARYLBENZOFURAN FROM THE ROOT BARK OF THE CULTIVATED MULBERRY TREE (MORUS ALBA L.)

Taro Nomura^{*} and Toshio Fukai Faculty of Pharmaceutical Science, Toho University, 2-2-1, Miyama, Funabashi-shi, Chiba 274, Japan

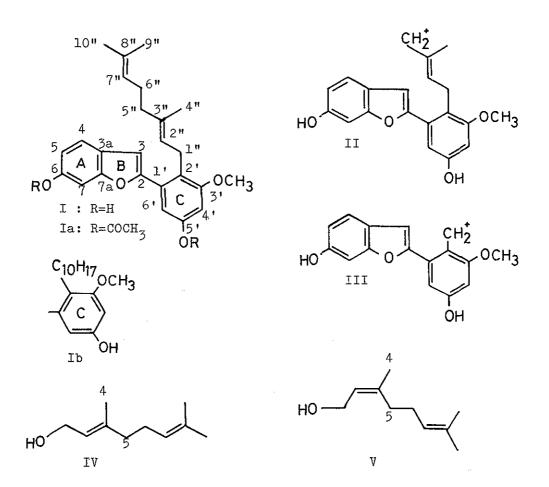
Jun Uno and Tadashi Arai

Reserch Institute for Chemobiodynamics, Chiba University, 1-8-1, Inohana-cho, Chiba-shi, Chiba 280, Japan

From the benzene extract of the root bark of the cultivated mulberry tree (a variety of <u>Morus alba</u> L.), a novel isoprene-substituted 2-arylbenzofuran derivative, mulberrofuran A, was isolated whose structure was shown to be I on the basis of spectral data. The antimicrobial activities of I are reported.

The structures were reported¹ of a series of prenylflavonoids isolated from the root bark of <u>Morus alba</u> L., a plant of Moraceae family. In the course of our studies on the constituents of the root bark, a new isoprene substituted 2-arylbenzofuran derivative, mulberrofuran A (I), was isolated from the benzene extract. In this paper, we report the isolation, structure determination and antimicrobial activities of I.

-1593-


The dried root bark (5.0 Kg) of the cultivated mulberry tree (a variety of Morus alba L.), collected in Gunma Prefecture, was finely cut and extracted with n-hexane and then with benzene. The benzene extract was dissolved in methanol (500 ml), and allowed to stand until semi-solid mass was separated which was removed by filtration. After evaporation, the residue (54 g) was dissolved in benzene (200 ml), and the solution was allowed to stand for a day at room temperature. Concentration of the benzene solution gave a brown residue (34 g), which was dissolved in ether. The ether solution was extracted successively with 5 % aqueous sodium bicarbonate, 5 % aqueous sodium carbonate, and 5 % aqueous sodium hydroxide solution. The 5 % aqueous sodium hydroxide solution was acidified with dilute hydrochloric acid and extracted with ether. From the ether solution, a mixture of phenolic material (20 g) was obtained, and was chromatographed on silica gel using benzenemethanol (99.7:0.3) as an eluent to give a mixture of fluorescent materials (2.7 g) containing I and other unidentified compounds. From this mixture, I (26 mg) was isolated by preparative TLC (ether:chloroform=1:4, silica gel, and ethyl acetate:benzene=1:1, silica gel²).

Mulberrofuran A (I) was obtained as colorless plates, mp 100-103°, M⁺ 392.1958 (Calcd. for $C_{25}H_{28}O_4$:392.1986), $C_{25}H_{28}O_4$, exhibiting negative ferric chloride reaction and Gibbs reaction. Mulberrofuran A (I) gave the absorption bands for hydroxyl and benzene ring in the ir spectrum (v_{max}^{Nujol} : 3400, 1625, 1595 cm⁻¹) and showed the absence of carbonyl function. The uv spectra [λ_{max}^{EtOH} nm(log ε): 216(4.51), 280(sh 4.08), 311(4.37); $\lambda_{max}^{EtOH+NaOH}$:

300(sh 4.08), 328(4.37)] resembled those of 2-arylbenzofuran derivatives³ suggesting that I possesses a 2-arylbenzofuran skeleton. The mass spectrum of I showed the fragments⁴ at m/e $323(C_{20}H_{19}O_4)$, II), 269(C16H13O4, III), 123(C9H15), 69(C5H9), The significant peak at m/e 269 indicates the loss of m/e 123 (due to side chain) from the molecular ion, suggesting the presence of a geranyl (or neryl) group in the formula (I). The presence of a geranyl (or neryl) group and a methoxyl group was supported by the $^{1}\mathrm{H}$ nmr spectrum of I in CDCl₃: 1.58, 1.64(each 3H, s, C_{8"}-CH₃), 1.70 (3H, s, C_{3"}-CH₃), 2.01(4H, br s, C_{5"}-H×2 and C_{6"}-H×2), 3.48(2H, br d, J=6.4Hz, C₁,-H×2), 3.81(3H, s, OCH₃), 4.95-5.30(4H, m, C₆-OH, C₅,-OH, $C_{2"}$ -H, and $C_{7"}$ -H, on addition of D_2O , this signal was altered to 2H, m). On treatment of I with acetic anhydride in pyridine at room temperature for 7 min, a diacetate (Ia) was obtained as a viscous oil which exhibits the following spectroscopic properties, $ir[v_{max}^{Nujol}]$ 1770, 1625(sh), 1615(sh), 1585 cm^{-1}], ¹H nmr (δ in CDCl_3)[1.59, 1.65, 1.71(each 3H, s, $C_{3"}-CH_3$ and $C_{8"}-CH_3$), 2.03(4H, br s, $C_{5"}-H\times 2$ and $C_{6,n}$ -H×2), 2.32, 2.34(each 3H, s, OAc), 3.53(2H, br d, J=7Hz, $C_{1,n}$ -H×2), 5.15(2H, m, C₂, and C₇,-H), 6.68(1H, d, J=2.5Hz, C₄,-H), 6.86(1H, br s, C3-H), 6.99(1H, dd, J=2 and 8.5Hz, C5-H), 7.10(1H, d, J=2.5Hz, C_6 ,-H), 7.28(lH, C_7 -H, overlapping with the solvent)⁶, 7.55(lH, d, J=8.5Hz, C_4 -H)], ms [m/e 476(M^+), 434, 365, 353, 323, 312, 311, 281, 269, 123, 69]. These results indicate that I possesses two hydroxyl groups on aromatic rings.

The ¹H nmr spectrum of I showed the signals corresponding to six hydrogens in the aromatic region. The broad singlet at δ 6.76 is probably due to C₃-H^{3b} and the arrangement of substituents in the

-15,95-

A ring was assumed by the ABX type signals as follows: A double doublet signal at δ 6.78(lH, J=2.1 and 8.4Hz, C₅-H), doublet at δ 6.99(lH, br d, J=2.1Hz, C₇-H), and doublet at δ 7.40(lH, d, J=8.5Hz, C₄-H) indicated that A ring of I was substituted in the 5- or 6-position. The chemical shifts and coupling patterns of these signals were similar to those of 6-oxygenated-benzofuran derivatives^{3c,d,7} The broad doublet signal at δ 6.99 showed that the small long-range coupling were operative between protons at C₃ and C₇ of benzofurans⁸. In the ¹H nmr spectrum of Ia, the signals of the protons at C₅ and

 C_7 underwent a downfield shift relative to I of <u>ca</u>. 0.2-0.3 ppm. This shift is ascribed to loss of the shielding effect of a phenolic hydroxyl group \underline{ortho} to the C₅ and C₇ protons. These results support that I has a hydroxyl group attached at C6. The ¹H nmr spectrum of I showed the <u>meta</u>-coupled doublet (J=2.5Hz) at δ 6.48(C₄,-H) and δ 6.82(C₆,-H) which indicates that the C-ring is unsubstituted at 2' and 4', at 3' and 5' or 4' and 6' positions. The biogenetic analogy to the other 2-arylbenzofuran derivatives isolated from Morus species 3c,f led us to the assumption that C ring has the 3',5'-dioxygenated pattern. If geranyl (or neryl) side chain is adjacent to a methoxyl group, additional rearrangements occur with loss of C_8H_{15} (lll mass unit)⁹. Mulberrofuran A (I) shows the fragment ion at m/e 281(M^+ - C_8H_{15} , 95 %)⁴ indicating that a geranyl (or neryl) group is adjacent to a methoxyl group. The presence of a geranyl (or neryl) group at 2' position was supported by the nuclear Overhauser effect (NOE) in I: The irradiation of the methylene signal (δ 3.48, C₁₀-H×2) increased the area (+ 12.9 %) of the olefinic proton (δ 6.76, C_z-H), but the NOE was not observed between the methylene signal and the aromatic protons in the C ring. The NOE was also observed (+ 17.8 %) between the methoxyl signal (δ 3.81) and the proton (δ 6.48, C_A,-H), but the NOE was not observed between the proton at δ 6.82 (C₆,-H)¹⁰ From these results, the partial structure (Ib) is possible for ring C. In order to corroborate the structure of I, the ¹³C nmr spectrum was analysed as follows: δ in CDCl₃, 16.3(q, C_{4"}), 17.7(q, C_{9"}), 25.6(q, C_{10"}), 25.8(t, C_{1"}), 26.7(t, C_{6"}), 39.7(t, C_{5"}), 55.8(q, OCH₃), 98.2(d, C₄,)^{11a} 99.5(d, C₆,)^{11a} 105.2(d, C₇), 107.0(d, C₃), 111.9(d, C₅),

-1597-

121.2(d, $C_{2^{"}}$), 121.4(s, C_{3a}), 122.9(s, $C_{2^{,}}$), 123.8(d, C_{4}), 124.4(d, $C_{7^{"}}$), 131.2(s, $C_{8^{"}}$), 131.7(s, $C_{1^{,}}$), 135.0(s, $C_{3^{"}}$), 153.5(s, C_{6}), 11b 154.3(s, C_{2}), 11b 154.4(s, $C_{5^{,}}$), 11b 155.4(s, C_{7a}), 11b 159.3(s, $C_{3^{,}}$). Assignments of the carbon atoms in I were performed by off-resonance decoupling technique, and by comparison of the ¹³C nmr spectra of the model compounds, the benzofuran derivatives^{7,12a} and geranylated compounds.^{12b} The possibility of geranyl group is supported by the ¹³C nmr spectrum of I as follows: The signals of C_{4} and C_{5} of geraniol (IV) appear at δ 15.7 and δ 38.9, respectively, while the signals of C_{4} and C_{5} of nerol (V) are at δ 22.8 and δ 31.5, respectively.¹³ The signals of $C_{4^{"}}$ and $C_{5^{"}}$ of I appeared at δ 16.3 and 39.7, respectively. From the consideration of above results, we tentatively propose the formula (I) for a structure of mulberrofuran A. To the author's knowledge, I is the first example of a geranylated 2-arylbenzofuran derivative found in nature.

Recently 2-arylbenzofuran derivatives were isolated as phytoalexin from diseased mulberry tree (<u>Morus alba</u> L.), and their antifungal activities were reported.^{3f} Therefore, the antimicrobial spectrum of I was determined by the agal streak method. Mulberrofuran A (I) was effective against Gram-positive bacteria but inactive against Gram-negative bacteria, and showed weak activity against fungi at a level insufficient for further interest. The minimum inhibitory concentrations (MIC) against a variety of microorganisms are shown in Table.

able Antimicrobial spectra of mulberroluran A		
Test organism	MIC [*] (mcg/ml)	
<u>Staphylococcus</u> <u>aureus</u> 209p	6.25	_
Streptococcus faecalis	3.12	
<u>Basillus sultilis</u> PCI 219	3.12	
Mycobacterium sp. 607	1.56	
<u>Escherichia</u> <u>coli</u> F _l	> 100.0	
<u>Pseudomonas</u> <u>aeruginosa</u>	> 100.0	
<u>Trichophyton</u> mentagrophytes *1	25.0	
Fusarium roseum ^{*2}	100.0	
<u>Gibberella</u> <u>saubinetti</u> *2	100.0	
<u>Helminthosporium</u> <u>sesamum</u> *1	100.0	
Basillus sultilis PCI 219 Mycobacterium sp. 607 Escherichia coli F ₁ Pseudomonas aeruginosa Trichophyton mentagrophytes ^{*1} Fusarium roseum ^{*2} Gibberella saubinetti ^{*2}	3.12 1.56 > 100.0 > 100.0 25.0 100.0 100.0	

Table Antimicrobial spectra of mulberrofuran A

* Agar streak method.

Medium: Heart infusion agar 37°C, 24 or 48 hr for bacteria.

*1 Sabouraud agar 27°C, 48 or 72 hr.

*2 Potato dextrose agar 27°C, 48 or 78 hr.

ACKNOWLEDGEMENT We are grateful to the staff of Application Lab., JEOL LTD., for the measurements of NOE and ¹³C nmr spectra.

REFERENCES AND FOOTNOTES

la V.H. Deshpande, P.C. Parthasarathy, and K. Venkataraman, <u>Tetrahedron Letters</u>, 1968, 1715; b V.H. Deshpande, P.V. Wakharkar, and A.V. Rama Rao, <u>Indian J. Chem.</u>, 1976, 14B, 647; c K. Venkataraman, <u>Phytochemistry</u>, 1972, 11, 1571; d T. Nomura T. Fukai, S. Yamada, and M. Katayanagi, <u>Chem. Pharm. Bull.(Tokyo)</u>, 1978, 26, 1394; e T. Nomura, T. Fukai, and M. Katayanagi,

<u>Chem. Pharm. Bull.(Tokyo)</u>, 1978, 26, 1453; f C. Konno, Y. Oshima and H. Hikino, <u>Planta medica</u>, 1977, 32, 118; g T. Nomura, T. Fukai, and M. Katayanagi, <u>Heterocycles</u>, 1978, 9, 745; h T. Nomura and T. Fukai, <u>Heterocycles</u>, 1978, 9, 1295.

2a The layers were prepared with 0.2 M sodium acetate solution instead of water; b K. Egger, "Thin-Layer Chromatography", ed. by E. Stahl, Spring-Verlag, New York, 1969, p 697.

3a C.Y. Hopkins, D.F. Ewing, and M.J. Chisholm, <u>Can. J. Chem.</u>,
1967, 45, 1425; b M. Takanashi, Y. Takizawa, and T. Mitsuhashi,
<u>Chem. Letters</u>, 1974, 869; c V.H. Deshpande, R. Srinivasan, and
A.V. Rama Rao, <u>Indian J. Chem.</u>, 1975, 13, 453; d N.W. Preston,
K. Chamberlain, and R.A. Skipp, <u>Phytochemistry</u>, 1975, 14, 1843;
e B. Talapatra, T. Ray, and S.K. Talapatra, <u>Indian J. Chem.</u>, 1976,
14B, 613; f M. Takasugi, S. Nagao, T. Masamune, A. Shirata, and
K. Takahashi, <u>Tetrahedron Letters</u>, 1978, 797; g J.L. Ingham and
P.M. Dewick, <u>Phytochemistry</u>, 1978, 17, 535.

4 The formulae of the fragment ions were supported by the highresolution mass spectrometry.

5a A. Ueno, M. Ichikawa, T. Miyase, S. Fukushima, Y. Saiki, and K. Morinaga, <u>Chem. Pharm. Bull.(Tokyo)</u>, 1973, 21, 1734; b V.H. Deshpande, A.V. Rama Rao, K. Venkataraman, and P.V. Wakharkar, <u>Indian J. Chem.</u>, 1974, 12, 431.

6 In acetone-d_6, this signal appeared at δ 7.39(lH, br d, J=2Hz, C_7-H).

7 T. Okuyama and T. Fueno, <u>Bull, Chem. Soc. Jpn.</u>, 1974, 47, 1263.
8 J.A. Elvidge and R.G. Foster, <u>J. Chem. Soc.</u>, 1963, 590.

HETEROCYCLES, Vol.9, No.11, 1978

9a G.H. Stout, M.M. Krahn, P. Yates, and H.B. Bhat, <u>Chem. Comm.</u>,
1968, 211; b N.S. Kumar, G. Pavanasasivan, M.U.S. Sultanbawa, and
R. Mageswaran, <u>J. Chem. Soc. Perkin I</u>, 1977, 1243.
10 The chemical shifts of the methylene signal at δ 3.48(C₁"-H×2) and the methoxyl signal at δ 3.81 are so near that the NOE between these signals are not clear.
11 Assignments may be reversed.
12a M. Komatsu, I. Yokoe, and Y. Shirataki, <u>Chem. Pharm. Bull.(Tokyo)</u>,

1978, 26, 1274; b E. Wenkert and H.E. Gottlieb, <u>Phytochemistry</u>, 1977, 16, 1811.

13 M. Kozawa, N. Morita, K. Baba, and K. Hata, <u>Yakugaku Zasshi</u>, 1978, 98, 210.

Received, 11th August, 1978