
ELECTRIC DIPOLE MOMENT OF 5H-1,2,3-DITHIAZOLE DERIVATIVE EQUILIBRATED WITH 2,4,6-TRI-t-BUTYL-N-THIOSULFINYLANILINE

Yoshio Inagaki, Renji Okazaki, and Naoki Inamoto* Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Electric dipole moment of 2,4,6-tri-t-butyl-7,8,9-dithiazabicyclo[4.3.0]nona-2,4,9-triene ($\underline{1\alpha}$) was estimated to be about 3.0 D by measuring the dielectric constants of dilute benzene solutions of the equilibrium mixture of $\underline{1\alpha}$ and 2,4,6-tri-t-butyl-N-thiosulfinylaniline ($\underline{1\beta}$) with a known molar ratio. This value is much larger than the estimated value of $\underline{1\beta}$ (1.5 D).

Both inter-¹ and intra-molecular² 1,3-dipolar cycloadditions are well established routes to various five-membered heterocycles. Of many examples of the latter reactions, most extensively studied is cyclization of an azido-azomethine into a tetrazole;³ the isomerization is usually reversible and the factors influencing the equilibrium have been a subject of some recent studies.⁴

Recently, we have found that a thiosulfinylamino group (-N=S=S) behaves like an azide group and undergoes intramolecualr cyclization with "the double bond" of a benzene ring to give a novel heterocycle, 5H-1,2,3-dithiazole; the product (<u>1</u>) of the reaction between 2,4,6-tri-t-butylaniline and disulfur dichloride exists as a cyclized form (<u>1</u> α) in solid state, while in solution an equilibrium between <u>1 α </u> and <u>1 β </u> is established with the former being a major component.⁵

As part of study to clarify the factors affecting the equilibrium, we calculated the electric dipole moment of $\underline{l}\alpha$ by the following procedure and it was found to be about 3.0 D. Molecular polarization was determined by the method of Halverstadt and Kumler in benzene at 25 °C.⁶ Electronic polarization was equated to molecular refractivity and, since the molecular refractivities of $\underline{l}\alpha$ (99.999 cm³) and $\underline{l}\beta$ (102.644 cm³) calculated from atomic refractivity are nearly equal, they were assumed to be the same, 100 cm³. Atomic polarization was assumed to be 5% of electronic polarization. Apparent dipole moment (μ) thus obtained was 2.87 D. Since μ^2 can be expressed as in the following equation,

$$\mu^2 = \frac{\mu_{\alpha}^{2_{\mathrm{K}}} + \mu_{\beta}^{2}}{\kappa + 1}$$

where μ_{α} and μ_{β} are dipole moments of $\underline{l\alpha}$ and $\underline{l\beta}$ respectively and K is the equilibrium constant $[\underline{l\alpha}]/[\underline{l\beta}]$, which was determined to be 11.3 at 25 °C by NMR spectrum in benzene-d₆ solution. μ_{α} is calculated to be 2.96 D assuming that μ_{β} is equal to the value of 2,4-di-t-butyl-6-methyl-N-thiosulfinylaniline (1.51 D).⁷

It is interesting that the dipole moment of $\underline{l\alpha}$ is much larger than that of $\underline{l\beta}$. This fact is in keeping with the observation by NMR spectroscopy that the more polar is a solvent, the larger is population of $\underline{l\alpha}$.⁸

Inspite of extensive studies on the azide-tetrazole equilibrium, there seems no example in which dipole moments of the both components are measured. However, in the light of the reported values of phenyl azide $(1.56 \text{ D})^9$ and benzotriazole (4.10 D), ⁹ and the reported solvent effect on the azidetetrazole equilibrium, ⁴ the nature of the equilibrium observed for <u>1</u> appears very similar to that of the azide-tetrazole equilibrium.

REFERENCES

R. Huisgen, Angew. Chem., 1963, <u>75</u>, 604; R. Huisgen, R.
 Grashey, and J. Sauer, 'The Chemistry of Alkenes', ed. by
 S. Patai, Interscience Publishers, New York, 1964, p. 806.
 J. Elguero, Bull. Soc. Chim. Fr., 1971, 1925; H. Reimlinger,
 Chem. Ber., 1970, <u>103</u>, 1900.

3 For reviews, see R.N. Butler, Chem. Ind. (London), 1971, 371; M. Tišler, Synthesis, 1973, 123; R.N. Butler, Adv. Het. Chem., 1977, 21, 323.

4 J. Elguero, R. Faure, J.P. Galy, and E.J. Vincent, Bull.
Soc. Chim. Belg., 1975, <u>84</u>, 1189; M. Rull and J. Vilarrasa,
Tetrahedron Lett., 1976, 4175; L.A. Burke, J. Elguero, G. Leroy,
and M. Sana, J. Am. Chem. Soc., 1976, <u>98</u>, 1685; A. Könnecke,
R. Dörre, E. Kleinpeter, and E. Lippmann, Tetrahedron Lett.,
1978, 1311.

5 Y. Inagaki, R. Okazaki, and N. Inamoto, Tetrahedron Lett., 1974, 4575.

6 I.F. Halverstadt and W.D. Kumler, J. Am. Chem. Soc., 1942, <u>64</u>, 2988.

7 Y. Inagaki, R. Okazaki, N. Inamoto, and T. Shimozawa, Chem. Lett., in press.

8 Y. Inagaki, R. Okazaki, N. Inamoto, K. Yamada, and H. Kawazura, unpublished results.

9 A.L. McClellan, 'Tables of Experimental Dipole Moment', W.H. Freeman and Co., San Francisco, 1963.

Received, 2nd September, 1978