SYN SELECTIVITY IN THE REACTIONS OF AZOMETHINE IMINES AND AZOMETHINE OXIDES WITH CIS-3, 4-DISUBSTITUTED CYCLOBUTENES

Remo Gandolfi⁺, Massimo Ratti and Lucio Toma Istituto di Chimica Organica, Università di Pavia, 27100 Pavia, Italy Carlo De Micheli

Istituto di Chimica Farmaceutica, Università di Milano, Italy

<u>Abstract</u> - 3, 4-Dihydroisoquinoline-N-phenylimine reacted with <u>cis-</u>3, 4-dichloro, -dihydroxy and -diacetoxycyclobutenes to give the sterically disfa voured <u>syn</u> adducts as dominant products; with carbonyldioxy and dicarbo methoxycyclobutenes repulsive steric interactions led to the prevailence of the <u>anti</u> adducts. An increased <u>syn</u> selectivity was found for the reactions of 3, 4-dihydroisoquinoline-N-oxide with diacetoxycyclobutene and of nitro substituted 3, 4-dihydroisoquinoline-N-phenylimines with dichlorocyclobutene.

One of the outstanding problems in 1, 3-dipolar¹⁻⁴ and Diels-Alder^{4, 5} cycloadditions is the <u>syn-anti</u> isomerism.^{*} In this paper we would like to present the results of the reactions of three azomethine imines (2)-(4) with <u>cis-3</u>, 4-disubstituted cyclobutenes (1a)-(1e) and of the azomethine oxide (5) with (1c). The yet unknown <u>cis-3</u>, 4-diacetoxycyclobutene (1c) [oil; γ_{max} , 1750 cm⁻¹ (OCOMe); $\int (CDCl_3) 6.43$ (m, H-1 and H-2), 5.72 (m, H-3 and H-4), 3.12 (s, Me)] was prepared in quantitative yield by acylation of (1b).^{2c}

The pyrazolidines (6)-(11) (Table 1 and Scheme) were obtained by heating the dimers of azomethine imines (2)-(4) and cyclobutenes (1a)-(1e) in boiling benzene. The quantitative composition of the reaction mixtures was obtained by column chromatography separation. The <u>exo, syn</u>-adducts (6), (8) and (10) [with the exception of (6b)] were characterized by a smaller $R_{\rm F}$ (tlc) than the

^{*} For <u>syn-anti</u> and <u>exo-endo</u> nomenclature see ref. 1, pp. 403-405.

corresponding <u>exo</u>, <u>anti</u>-adducts (7), (9), (11). This tic behaviour is in agreement with a predictable larger dipole moment for the syn compounds. ^{2a} No <u>endo</u> products, e.g. <u>endo</u>, <u>anti</u> adducts (14), were detected in the reaction mixtures showing that the 1,3-dipoles reacted with the cyclobutenes only in the sterically favoured <u>exo</u> disposition.

Reduction of (6d) and (7d) with LiAIH4 afforded (6b) and (7b), respectively.

The structures were assigned on the basis of ¹Hnmr spectra whose characteristic patterns are illustrated by the data of three pairs of adducts reported in Table 2. In the <u>anti</u> adducts H-7 reso – nated at higher field values than H-6 while in the <u>syn</u> isomers H-7 appeared at similar or lower field values than H-6. This finding is consistent with the <u>exo</u>, <u>anti</u> structures (7), (9) and (11) where H-7 is shielded by the N-Ar group. The alternative <u>endo</u>, <u>anti</u> structure (14) should be excluded because for that structure H-6 would have appeared at higher field values than H-7 as a result of the strong shielding by the phenyl molety of the tetrahydroisoquinoline system. Moreover H-4 resonated at lower field values in the <u>syn</u> series than in the <u>anti</u> one and in the former resul-

HETEROCYCLES. Vol 12, No 7, 1979

Comp.	Mp (°C)	<u>Syn</u> / <u>Anti</u> ratio ^a	Comp.	Mp (°C)	<u>Svn</u> / <u>Anti</u> ratio ^a	
(<u>6a</u>)	170 - 172	1, 35	(6b)	185 - 187	≥ 16	
(7a)	120 - 122		(7b) ^b	158 - 160		
(8a) ^C	256 - 257	3,0	(6c)	192 - 196	1.5	
(9a) ^C	209 - 211		(7c)	149 - 150		
(10a) ^C	238 - 239	2. 1	(6 d)	223 - 225	0.15	
(11a) ^C	236 - 237	***	(7d)	215 - 217		
(12c)	162 - 163	4.6	(6e)	d	< 0,05	
(13c)	106 - 107		(7e)	146 - 149	-	

Table 1

^aThe values represent the mean of two indipendent runs. Overall yields were $\geq 80\%$. Lower yields have been found for the reaction of (4) with (1a) (25\%) owing to competitive isomerization of (4) to a benzotriazole-1-oxide derivative⁹ and for reaction of (2) with (1e) (40\%) owing to isomerization of (1e) to 1,4-dicarbomethoxybutadiene.

^bDetected (trace amounts) by tlc analysis of the crude reaction mixture ^cYellow ^d Not detected

ted practically unaffected changing CDCl₃ with $C_6^{}D_6^{}$. This result was expected for a proton which is deshielded and whose solvation is hindered by the neighbouring groups at positions 6 and 7. Exo, syn structures (6), (8) and (10) are consequently assured.

The J_{4,5} found for the pyrazolidines (6)-(11) was \geq 6.8 Hz a value unexpectedly quite different from those found for the corresponding isoxazolidines [adducts of (5) to cyclobutenes; cf. J_{4,5} = 6.0 for (13c) and < 3.0 Hz for (12a)-(12e) and (13a), (13b), (13d), (13e)].^{2b, 2c} Therefore J_{4,5} should be used with caution when choosing between <u>cis</u>, <u>trans</u> structures for compounds of this type.

X-ray analysis of (6a), (6d) and (10a) confirmed our structural assignment.⁶ Nitrone (5) has been reacted at room temperature with (1c) to give a mixture of the adducts (12c)

1 _{Hnmr} [S(CDCI ₃)]		data and (in pare	ntheses) $\Delta\delta = \delta$	6(CDCI3) - 5(c ₆ 0 ₆), ^{a,b}	
Comp.	H- 1	⊢-4	H-5	H6	H-7	^J 4,5
(6c)	4, 48	5,13	3,58	5.43	5,86	8,5
	(0,63)	(-0,07)	(>0,48)	(0,28)	(0.08)	
(7c)	4,67	4.53	3.30	5.44	5.10	8.0
	(0, 17)	(0,33)	(0,31)	(0,22)	(0,12)	
(6 d)	4,59	5.23	3,77	5.49 (1.05)		6.8
	(0, 79)	(-0,10)	(>0,50)			
(7d)	4.47	4.41	3.52	5.13	4.84	7.4
	(0,65)	(0 <u>.</u> 66)	(0.75)	(1.05)	(0.76)	
(8a)	4,97	5.40	3,97	5,3	33	8.0
	(1.33)	(0,01)	(>0.77)	(0,97)		
(9a)	4.70	4, 48	3.58	4.70	4.52	8.5
	(0, 32)	(0.35)	(0.26)	(0.42)	(0,50)	

Table 2

^a Signal multiplicity: doublets for H-4 and multiplets for other protons $^{
m b}$ J in Hz

and (13c) (Table 1), which have also been obtained on acetylation with acetylchloride of the previously described (12b) and (13b).^{2c} The following <u>svn/anti</u> ratios were obtained^{2b, 2c} in the reactions of (5) with cyclobutenes: 2.7 for (1a), ≥ 16 for (1b), 0.05 for (1d) and 0.14 for (1e). The <u>syn/anti</u> ratios found in the reactions of (2) and (5) with cyclobutenes (1) are, in our opinion, determined by positive electronic interactions which lead to <u>svn</u> approach whereas steric repulsion between 1, 3-dipoles and the cyclobutene substituents (steric size: COOMe > CI > OCOMe > OH) favours the <u>anti</u> approach. The results suggest a loose correlation between the former effect and substituent electronegativity (electronegativity OCOMe > OH > CI > COOMe).⁷ In addition, the high <u>syn</u> selectivity observed for (1b) may be due also to hydrogen bond in the transition state between OH and N-Ph group of the 1, 3-dipole.^{2c} Moreover the prevailence of <u>anti</u> attack for (1d) [in which the electronegativity of the substituent group is similar to that of (<u>ic</u>)] can be rationalized by a preferential attainement of conformation of type A over that of type B (Scheme). Conformation A is possibly stabilized by a through space interaction between Π_{CO}^{*} and Π_{CC} orbitals. The present work has also evidenced that the introduction of an electron withdrawing substituent in the 1,3-dipole, on going from (2) to (3) and (4), resulted in an enhanced <u>syn</u> selectivity in the cycloaddition with (1a). A similar effect was previously observed in the reaction of nitrile oxides with (1a). ^{2a} In the case of (4), however, electronic effect is to some extent neutralized by steric hindrance brought in by o-NO₂ group.

Our conclusion is that 1, 3-dipolar cycloaddition on 3, 4-disubstituted cyclobutenes is rather sensitive to both two previously proposed electronic effect: (i) the intramolecular perturbation between \mathcal{C}^* and \mathbb{T} orbitals of dipolarophile;³ (ii) the intermolecular interaction between LUMO_{1,3-di-} pole and lone pairs of Z substituents.^{2a} Qualitatively, the higher the electronegativity of Z the stronger is the (i) effect which allows a better dispersion of the partial negative charge, arising on the dipolarophile in the oriented complexes as a consequence of the dominant HOMO_{1,3-dipole} - LUMO_{cyclobutene} interaction, when 1,3-dipole attacks on the <u>svn</u> face than when the attack is on the <u>anti</u> face.³ As regards (ii) effect electronwithdrawing substituents on the 1,3-dipole will lower its LUMO and consequently <u>svn</u> attack results accelerated.^{2a}

ACKNOWLEDGEMENT We wish to thank Professors R. Huisgen and W.E. Truce for providing directions for the preparations of the dimers of dipoles (2)-(4), Professors G. Bianchi and P. Grunanger for discussions and the C.N.R. (Rome) for financial support.

REFERENCES

- 1 G. Blanchi, C. De Micheli and R. Gandolfi, 1, 3-Dipolar Cycloadditions involving X-Y Groups¹, in ¹The Chemistry of Functional Groups, Supplement A¹, eds. by S. Patai, John Wiley and Sons, inc., New York, 1977, pp. 369-532.
- a) G. Bianchi, C. De Micheli, A. Gamba and R. Gandolfi, <u>J.C. S. Perkin 1</u>, 1974, 137;
 b) C. De Micheli, A. Gamba and R. Gandolfi, <u>Tetrahedron Letters</u>, 1975, 2493; c) C. De Micheli, A. Gamba, R. Gandolfi and L. Scevola, <u>J.C. S. Chem. Comm.</u>, 246, 1976.
- 3 M. Franck-Neumann and M. Sedrati, Angew.Chem. Int. Ed. Engl., 1974, 13, 606.
- 4 P.V. Alston and R.M. Ottenbrite, <u>J. Heterocyclic Chem</u>, 1977, 14, 1443.
- 5 Nguyen Trong Anh, Tetrahedron, 1973, 29, 3227 and references cited therein.
- 6 R. Oberti and R. Gandolfi, <u>Cryst. Struct. Comm.</u>, 1978, 7, 15 and 21; A. Coda and R. Oberti, private communication.
- 7 R.W. Taft, 'Separation of Polar, Steric and Resonance Effects in Reactivity', in 'Steric Effects in Organic Chemistry' eds. by M.S. Newmann, John Wiley and Sons, New York, 1956, pp.613-618. The difference between electronegativity and electronwithdrawing power [ele ctronwithdrawing power, CI>OCOMe > COOMe > OH]⁸ is therein discussed.
- 8 P.R. Wells, 'Linear Free Energy Relationship', Academic Press, London New York, 1968, p.38.
- 9 R. Grashey, <u>Angew. Chem. Int. Ed. Engl</u>., 1962, 1, 158.

Received, 8th March, 1979