SYN SELECTIVITY IN THE REACTIONS OF AZOMETHINE IMINES AND AZOMETHINE OXIDES WITH CIS-3, 4-DISUBSTITUTED CYCLOBUTENES

Remo Gandolfi⁺, Massimo Ratti and Lucio Toma Istituto di Chimica Organica, Università di Pavia, 27100 Pavia, Italy Carlo De Micheli Istituto di Chimica Farmaceutica, Università di Milano, Italy

Abstract **-3, 4-Dihydroisoquinoline-N-phenylimine** reacted with cis-3, 4-di $chloro, -dihydroxy$ and $-diacetoxycyclobutenes$ to give the sterically disfa $$ voured-syn-adducts as dominant products; with carbonyidioxy and dicarbo methoxycyclobutenes repulsive steric interactions led to the prevailence of the anti adducts. An increased syn selectivity was found for the reactions of 3, 4-dihydroisoquinoline-N-oxide with diacetoxycyclobutene and of nitro substituted 3, 4-dihydroisoquinoline-N-phenylimines with dichiorocyclobutene.

One of the outstanding problems in 1,3-dipolar $1-4$ and Diels-Alder $4,5$ cycloadditions is the <u>syn-anti</u> isomerism.^{*} In this paper we would like to present the results of the reactions of three azomethine imines $(2)-(4)$ with cis-3, 4-disubstituted cyclobutenes $(1a)-(1e)$ and of the azomethine azomethine imines (2) – (4) with <u>cis</u>–3, 4–disubstituted cyclobutenes $(1a)$ – $(1e)$ and of the azomethine oxide (5) with $(1c)$. The yet unknown <u>cis</u>–3, 4–diacetoxycyclobutene $(1c)$ $\begin{bmatrix} \text{olif } & V_{\text{max}} \end{bmatrix}$, 17 $(OCOME); \n\delta (CDC1₃) 6.43 (m, H-1 and H-2), 5.72 (m, H-3 and H-4), 3.12 (s, Me)$ was prepared in quantitative yield by acylation of $(1b)$. $2c$

The pyrazolidines $(6)-(11)$ (Table 1 and Scheme) were obtained by heating the dimers of azomethine imines (2)-(4) and cyclobutenes (1a)-(1e) in boiling benzene. The quantitative composition of the reaction mixtures was obtained by column chromatography separation. The exo, syn-adducts (6), (8) and (10) with the exception of (6b) were characterized by a smaller R_F (tic) than the

^{*} For <u>syn-anti</u> and <u>exo</u>-e<u>ndo</u> nomenclature see ref. 1, pp. 403–405.

corresponding **exo, anti-adducts (7), (9), (11).** This tic behaviour is in agreement with a predictable larger dipole moment for the syn compounds. ^{2a} No <u>endo</u> products, e.g. <u>endo, anti</u> adducts (14), were detected in the reaction mixtures showing that the 1,3-dipoles reacted with the cyclobutenes only in the sterically favoured exo_disposition.

Reduction of (Gd) and $(7d)$ with LiAIH₄ afforded (6b) and (7b), respectively.

The structures were assigned on the basis of $\frac{1}{1}$ Hnmr spectra whose characteristic patterns are illustrated by the data of three pairs of adducts reported in Table 2. In the anti adducts H-7 reso nated at higher field values than H-6 while in the syn isomers H-7 appeared at similar or lower field values than H-6. This finding is consistent with the exo, anti structures (7), (9) and (11) where H-7 is shielded by the N-Ar group. The alternative endo, anti structure (14) should be exeluded because for that structure H-6 would have appeared at higher field vaiues than H-7 as a result of the strong shielding by the phenyi moiety of the tetrahydroisoquinoline system. Moreover $H-4$ resonated at lower field values in the syn series than in the $anti$ one and in the former resul-</u>

HETEROCYCLES. Vol 12, No 7 1979

Table I

 $^{\tt a}$ The values represent the mean of two indipendent runs. Overall yields were $\geq 80\%$. Lower yields have been found for the reaction of (4) with (1a) (25%) owing to competitive isomerization of **(4)** to a benrotriazole-1-oxide derlvati- ve⁹ and for reaction of (2) with (1e) (40%) owing to isomerization of (1e) to **1,4-dicarbomethoxybvtadiene.**

 $^{\rm b}$ Detected (trace amounts) by tlc analysis of the crude reaction mixture ^CYellow d Not detected

ted practically unaffected changing CDCl₃ with C₆D₆. This result was expected for a proton which is deshielded and whose solvation is hindered by the neighbouring groups at positions 6 and 7. Exo, syn structures (6), (8) and (10) are consequently assured.

The J $_{h- \epsilon}$ found for the pyrazolidines (6)-(11) was $\, \geq 6$.8 Hz a value unexpectedly quite different $4,5$ found for the pyrazolidines $\frac{(6)-(11)}{20}$ w from those found for the corresponding isoxazolidines $\left[\begin{smallmatrix} a & b & c \end{smallmatrix}\right]$ adducts of $\left(\begin{smallmatrix} 6 \ 2 \end{smallmatrix}\right)$ to cyclobutenes; cf. $J_{4,5}$ = 6.0 for (13c) and <3.0 Hz for (12a)-(12e) and (13a), (13b), (13d), (13e) . $2^{b, 2c}$ from those found for the corresponding isoxazolidines [adducts of (5) to cyclobutenes; cf.
 $J_{4,5}$ = 6.0 for (13c) and < 3.0 Hz for (12a)-(12e) and (13a), (13b), (13d), (13e)]. ^{2b, 2c} Therefore
 J_{μ} = should be $J_{4,5}$ should be used with caution when choosing between $\underline{cis}_{4,5}$ trans structures for compounds of this type.

6 X-ray analysis of **(6a),** (6d) and (10a) confirmed our structural assignement. - - - Nitrone (5) has been reacted at room temperature with (ic) to give a mixture of the adducts (12c)

Table 2

a Signal muitipiicity: doublets for H-4 and multiplets for other protons $^{\rm b}$ J in Hz

and (13c) (Table 1), which have also been obtained on acetylation with acetylchloride of the pre viously described (12b) and (13b). 2c The following $\frac{\text{syn}}{\text{ant}}$ ratios were obtained 2b , 2c in the reactions of (5) with cyclobutenes: 2.7 for $(1a)$, ≥ 16 for $(1b)$, 0.05 for $(1d)$ and 0.14 for $(1e)$. The syn/anti ratios found in the reactions of (2) and (5) with cyclobutenes (1) are, in our opinion, determined by positive electronic interactions which lead to <u>syn</u> approach whereas steric repulsion between 1,3-dipoles and the cyciobutene substituents (steric size: COOMe>Ci >OCOMe>OH) favoursthe anti approach. The results suggest a loose correlation between the former effect and substituent electronegativity (electronegativity OCOMe >OH > CI > COOMe) .⁷ in addition, the high syn selectivity observed for (1b) may be due also to hydrogen bond in the transition state **2c** between OH and N-Ph group of **the** 1,3-dipole. Moreover the prevailence of mi attack **for** *(2)* $\left[\begin{smallmatrix} \text{in which the electronegativity of the substitution group is similar to that of (1c) \end{smallmatrix}\right]$ can be rationalized by a preferential attainement of conformation of type A over that of type **B** (Scheme). Confor mation A is possibly stabilized by a through space interaction between $\mathfrak{N}_{\mathsf{CO}}^*$ and $\mathfrak{N}_{\mathsf{CC}}$ orbitals, The present work has also evidenced that the introduction of an electron withdrawing svbstituent in the 1, 3-dipole, on going from (2) to (3) and (4), resulted in an enhanced syn selectivity in the cycloaddition with (1a). A similar effect was previously observed in the reaction of nitrile oxides with (la). ^{2a} In the case of (4), however, electronic effect is to some extent neutralized by steric hindrance brought in by $o-NO_{2}$ group.

Our conclusion is that 1, 3-dipolar cycloaddition on 3, 4-disubstituted cyclobutenes is rather sensitive to both two previously proposed electronic effect; (i) the intramolecular perturbation between σ^* and π orbitals of dipolarophile;³ (ii) the intermolecular interaction between LUMO _{1, 3-di-} **2a** and lone pairs of **Z** substituents. ^{2a} Qualitatively, the higher the electronegativity of **Z** the stronger is the (i) effect which allows a better dispersion of the partial negative charge, arising on the dipolarophile in the oriented complexes as a consequence of the dominant HOMO $_{1.3-{\rm dipole}}$ - LUMO_{cyclobutene} interaction, when 1, 3-dipole attacks on the syn face than when the attack is on the <u>anti</u> face.³ As regards (ii) effect electronwithdrawing substituents on the 1,3-dipole will lower its LUMO and consequently attack results accelerated. **2a**

ACKNOWLEDGEMENT We wish to thank Professors R. Huisgen and W.E. Truce for providing directions for the preparations of the dimers of dipoles *(2)-(2),* Professors G. Dianchi and P. Grunanger for discussions and the C.N.R. (Rome) for financial support.

REFERENCES

- I G. Gianchi, C. De Micheli and R. Gandolfi, I 1, 3-Dipolar Cycloadditions involving X-Y Groups', in 'The Chemistry of Functional Groups, Supplement A', eds. by S. Patai, John Wiley and Sons, inc., New York, 1977, pp.369-532.
- ²**a)** G. Dianchi, C. De Micheli, A. Gamba and R. Gandolfi, J.C.S.Perk1n I, 1974, 137; b) C. De Micheli, A. Gamba and R. Gandolfi, Tetrahedron Letters, 1975, 2493; c) C. De Micheli, A. Gamba, R. Gandolfi and L. Scevoia, J.C.S.Chem.Comrn., 246, 1976.
- 3 M. Franck-Neumann and M. Sedrati, Anqew.Chem.lnt.Ed.End., 1974, *2,* 606.
- 4 P.V. Alston and R.M. Ottenbrite, J. Heterocyclic Chem., 1977, 14, 1443.
- 5 Nguyen Trong Anh, Tetrahedron, 1973, 29, 3227 and references cited therein. $\frac{29}{2}$,
- 6 R. Oberti and R. Gandolfi, Cryst. Struct. Comm., 1978, 7, 15 and 21; A. Coda and R. Oberti, private communication.
- 7 R.W. Taft, 'Separation of Polar, Steric and Resonance Effects in Reactivity', in ISteric ~ffects in Organic Chemistry1 eds. by MS. Newmann, John Wiley and **Sons,** New York, 1956, pp. 613-618. The difference between electronegativity and electronwithdrawing power $\left\lceil \right\rceil$ ele ctronwithdrawing power, CI>OCOMe > COOMe > OH $\begin{bmatrix} 8 \\ 1 \end{bmatrix}$ is therein discussed.
- 8 P.R. Welis, 'Linear Free Energy Relationshipl, Academic Press, London New York, 1968, P. 38.
- 9 R. Grashey, Angew. Chem. Int. Ed. Engl., 1962, 1, 158.

Received, 8th March, 1979