THE SYNTHESIS OF BENZOLACTONES BY PALLADIUM CATALYZED CARBONYLATION

Miwako Mori, Katsumi Chiba, Nobuo Inotsume and Yoshio Ban*

Faculty of Pharmaceutical Sciences, Hokkaido University,

Sapporo, 060 Japan

Phthalide was easily prepared from o-bromobenzyl alcohol in the presence of a catalytic amount of Pd(OAc)₂ and PPh₃ under an atmospheric pressure of carbon monoxide in a good yield. When a large amount of PPh₃ was used as a ligand, a better result was obtained. The six- and seven-membered benzolactones were synthesized by the same procedure.

We have recently reported the new synthesis of benzolactams($\underline{2}$) by palladium catalyzed carbonylation by a very simple procedure, 1 which has been extended to the total synthesis of the alkaloid, sendaverine. 2 It might be readily assumed that a similar treatment of o-bromo- ω -hydroxyalkylbenzene($\underline{3}$) would afford benzolactones($\underline{4}$).

In the present paper, we describe a simple procedure of the synthetic method of benzolactones(4) by use of this palladium catalyzed carbonylation.

^{**} This paper is dedicated to Professor Emeritus Tetsuo Nozoe on the occasion of his 77th birthday.

The typical procedure is demonstrated in the following: A whole mixture of o-bromobenzyl alcohol($\underline{3a}$, 1 eq.), a catalytic amount of $Pd(OAc)_2(2 \text{ mol}\$)$, PPh_3 (4 mol\$) and $n-Bu_3N(\underline{3a}$, 1 eq.) was added to the reaction vessel connected to a balloon filled with a carbon monoxide and heated at 100° for 26 h to give the expected phthalide($\underline{4a}$, 19.6\$, mp 73.5-75°) and o-carboxybenzyl alcohol($\underline{5}$, 4.9\$). However, the yield was lower than that of the synthesis of five-membered benzolactam ($\underline{2}$, n=1, $R=CH_2Ph$). Therefore, this reaction was surveyed under the various conditions(Table 1). It was turned out that the addition of a large amount of PPh_3 to the reaction mixture provided a good result and a higher temperature also increased the yield of the desired product(4a, 81.9\$).

Table 1. Carbonylation of 3a under the various conditions

Reaction Temp.	mol% of	mol% of	Reaction Time(h)	Yield of <u>4a</u> (%)
100°	2.0	4.0	26	24.5*
100°	2.2	4.0	63.5	29.6
130°	2.2	5.3	26	56.4
130°	2.2	60.0	26	81.9

^{*} The total yield of 4a and 5

Moreover, under similar conditions, six-membered benzolactone [$\frac{4b}{b}$, v_{max} 1740 cm⁻¹, m/e 148(M⁺), 69.8%] and seven-membered benzolactone [$\frac{4c}{b}$, v_{max} 1705 cm⁻¹, m/e 162 (M⁺), 41.6%] were also obtained from o-bromophenethyl alcohol($\frac{3b}{b}$) and o-bromophenylpropyl alcohol($\frac{3c}{b}$), respectively.

The reaction scheme might be considered as follows. It has been known that palladium (II) acetate could be reduced by carbon monoxide in the presence of the alcohol and a tertiary amine. The reduction complex $(\underline{6})$ should be inserted to aryl halide $(\underline{3})$ afford the arylpalladium complex $(\underline{7})$, which should be transformed to $\underline{9}$ via $\underline{8}$ by the insertion of carbon monoxide. The reductive elimination of palladium might give benzolactone $(\underline{4})$ and zerovallent palladium $(\underline{6})$.

These reactions are very useful because the starting material is readily available and carbon monoxide could be easily handled.

Further studies are in progress.

ACKNOWLEDGEMENT: This work was supported by a Grant-in-Aid for Scientific Research (No. 303023 and 367375) from the Ministry of Education, Sciences and Culture, Japan, which are gratefully acknowledged.

REFERENCES:

gar afficiance of

- M. Mori, K. Chiba and Y. Ban, <u>J. Org. Chem.</u>, <u>43</u>, 1684 (1978).
- 2. M.Mori, K.Chiba and Y.Ban, Heterocycles, 6, 1841 (1977).
- 3. a) A.Schoenberg, I.Bartoletti and R.F.Heck, J. Orq. Chem., 39, 3318 (1974).
 - b) M.Hidai, M.Kokura and Y.Uchida, <u>J. Organometall. Chem.</u>, <u>52</u>, 431 (1973).
- 4. K.Kudo, M.Sato, M.Hidai and Y.Uchida, Bull. Chem. Soc. Japan, 46, 2820 (1973).

Received, 7th May, 1979