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Reactivity sequences o f  dipolarophiles are 1,3dipole specific. Electmn- 

attracting substituents increase the rate constants o f  alkenes and olkynes towards 

diazomethone and diphenyldiazomethane i n  DMF, whereas electron-releasing 

substituents decelerate; this i s  in accordance with a predominant HO(diazwlkane) 

- LU(dipolamphile) control. The ~ ~ c l o a d d i t i o n s  o f  diazomethane are genemlly 

faster and more selective than those of diphenyldiazomethane. Similarly substitu- 

ted ethylenes and acetylenes do not differ much i n  their dipolarophilic activity. 

MO perturbation theory (PMO) provides the first general concept to explain reac- 
1-3 

t iv i ty sequences i n  concerted cycloadditions. Diazomethane additions constitute o 

simple test case amongst 1,3-dipolar ~ ~ c l o a d d i t i o n s  insofar or they can be approximately 

treated as HOMO (diazomethane) - L U W  (dipolarophile) controlled. Fifteen ethy lenic 

dipolarophiles for which rate constants, ionization potentials and n -n* transition 

energies were available, produced a straight line when log k was plotted versus the 2 
reciprocal energy distance of HO(diazomethane) and ~ ~ ( d i ~ o l o r o p h i l e ) . ~  A good fit  

with atomic orbital coefficients ond MO energies calculated by CND0/2 was only 

achieved after including the interaction with higher unoccupied olefinic MOs; the 

interaction of LU(di0zomethane) with the occupied ethylenic MOs could sti l l  be n e -  

glectedq5 We report here on structure-rate correlations of old 4'6 and new cyclo- 
0 

additions o f  diazomethone (DMF, 25 '~)  and diphenyldiozomethane (DMF, 40 C) to  many 



olefinic and ocetylenic dipolamphiles. 

The spectrophotometric and the volumetric method for monitoring the disappeamn- 
7 

ce o f  the diazcalkane were briefly described recently. On ly  very slow additions required 

correction for the thermolysis o f  the diaroalkanes which follows the first order up to 60 % 
-7 -1 . 

conversion. Dioroalkane (DM) decomposes with k = 3.6 10 sec tn DMF at 2 5 ' ~  
1 

-7 -1 . 
(tIl2 = 2 2  d); diphenyldiazomethane (DDM), kl = 8.1 10 sec in DMF at 40'~. The 

solubility o f  the volatile diozomethane i n  DMF i s  so high that no color can be detected i n  

the gas phase above the deep yellow solution. A l l  the cycloadditions obeyed the second 
5 

order mte law. The mte constants ore expressed i n  the dimension 10 k (I mol-I sec-I) 
2 

and the addition direction corresponds to  

- + 
RzC-N-N 

+ -t 

d= e d-e 

e I-pymzolines from D M  often tautomerize to 2-pymzolines, whereas mon y adducts o f  

DDM eliminate N2 at 40°c to give cyclopmpones. The products w i l l  be described else- 

where. 

H2C-CH-R 

R =  
C02C2H5 C6H5 

H CH=CH2 C4H9 0CqH9 

D M  112000 45 40 21.4 0.44 0.01 

DDM 812 1.23 0.79 0.06 

7 
The rate constants o f  D M  additions to monosubstituted ethylenes cover o 10 ronge. 

The ester group appears at the top, whereas phenyl and vinyl  activate ethylene only little. 

The buty l i n  1 -hexene deactivates 90-fold, the butoxy gmup in the vinyl ether even 4000- 

fold. Enamines do not react with DM. DDM cycloodditions at 40°c are slower by factors 

o f  7 - 140 than those o f  D M  at 25'~.  
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H CZH-CH-CH-R (trans) 
2 

R = C02CH3 C6H5 0COCH3 H CH3 0CH3 N(C2H5)2 

D M  2 570 21.0 21.4 2.43 1.34 0.06 

DDM 11.4 0.58 0.45 0.78 0.10 0.08 eO.01  

I -Substituted butadienes accept D M  and DDM exclusively at the 3,4 double bond. 
8 

The electronic effect o f  the I-substituent is dampened by the interconnecting ethylene sy- 

stem, whereas steric effects are constant. As anticipated, the substituent scale i s  compres- 
7 

red : only o factor o f  1900 between ester and alkoxy group towards D M  here versus 10 for 

the monosubstituted ethylenes. The deactivation by the diethylamino function exceeds that 
2 

byCCH3 st i l l  20-fold. DDM reacts here with R=C02CH3 10 foster than with R = A l k y l  
5 

cornpored with a difference o f  10 for the ethylene derivatives. 

H2CZH-R 

R = 
" ~ ~ 6 ~ 5  C02CH3 

C N  CO NH2 

DDM 2 780 831 4 74 82 

Corbonyl groups are the more electron-clttmcting, the less they are t ied up by reso- 

nance. Therefore, increasing resonance stabilization o f  the acrylic acid derivatives leads 

to  diminishing cycloaddition rate. 

C N  Maleic C H O C  H NC\ , H 
2 5 2 \c=C/ 

Anhydride \ 
C=C\ 

H/ C02C2H5 H' C N  

Fumaric ester exceeds acrylic ester 3 times i n  activity towads DDM, whereas fumo- 

ronitrile is somewhotslower than acrylonitrile. The record value o f  t e t ~ c y a n o e t h ~ l e n e  and 

the other k o f  the preceding line reveal o correlation with electron affinity. 2 



A methyl group i n  a-position of acrylic ester deactivates 18-fold, whereas [I-methyl 

causes a 145-fold deceleration in the D M  addition. This could well be the result o f  increa- 

sing LUMO e n e r g i e ~ . ~  Tiglic ester (a,(ldimethylacrylic ester) adds D M  1900 times slower 

than acrylic ester; this is less than the product o f  a- and P-methyl effects (2600). 

D M  1 1 2 0 0 0 ~  770 730 350 136 * Ethyl ester 

The trans-(l-methyl reduces the rate constant o f  acrylic ester 150-fold, whereas 

the increase o f  the Palky ls  bulk up to teri.-butyl causes only a further 6-fold rate de- 

crease. 

D M  21.7 0.27 0.004 0.44 

DDM 3.83 0.044 0.06 

1 ,2-Dialkylethylenes do not react with D M  except cycloalkenes which add the 

faster the more they suffer from angle strain. 

A plot o f  D M  reactivities versus those o f  DDM on the log scale defines o fairly li- 

near function (Fig. 1); the straight line was drown to satisfy the monosubstituted ethylenes 

(circles in Fig. 1). Considering the different steric requirements o f  the two diazoalkanes, 

one can probably not expect a better linearity o f  the correlation. The line i s  steeper than 

45O, i.e., D M  i s  somewhat more selective than DDM. That the more reactive species 

(DM) i s  also the more selective one, i s  not an inconsistency, but rather a consequence 
1 

o f  the PMO approach; analogously, tetracyanoethylene is more reactive and more se- 

lective in its Diels-Alder additions than maleic anhydride. 

I t  was shown for many 1,3-dipoles that the dipolamphilic activities o f  ethylenes 
9 

and acetylenes with the same substitution pattern ore rather similar. Diazoolkones 
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Figure 1 

possessohigher nucleophilicity than most other 1,3dipoles, and the CC triple bond i s  

more electrophilic than the double bond. Does this create o greater preference o f  diazo- 

alkanes for acetylenes than ethylenes ? 

5 
Table 1. Rote Comparison of Alkenes ond Alkynes in Cycloodditionr; 10 k (1 m o ~ ~ ~ s e c - ~ )  

2 

R R' RCH=CHR' R-CK-R' Ratio 
-- 

a. Diazomethane in DMF at ~ P C  

H c4H9 0.44 0.14 3.1 



5 -1 -1 
Table 1. (Continued); 10 k ( I  mol sec ) 

2 

R R' RCH=CH R' R-CK-R' Ratio 
- ~ 

b. Diphenyldiazomethane in DMF at 4o0c 

H C4H9 
0.06 0.09 0.7 

H C6H5 1.23 1.18 1.0 

H C02C2H5 812 1 020 0.8 

C6H5 C02C2H5 1.25 3.33 0.4 

C02C2H5 C02C2H5 
2 470 7 640 0.3 

Table 1 discloses a small effect of DDM in the expected direction. However, D M  

reacts faster with most of the olefinic than with the acetylenic bonds. Thus, the reoctivities 

o f  double and triple bond do not differ o great deal. 
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