HETEROCYCLES, Vol. 11, 1978

STUDIES ON THE SYNTHESIS OF BISINDOLE ALKALOIDS. XV¹,². A SYNTHESIS OF VINAMIDINE (CATHARININE).

James P. Kutney^{*}, John Balsevich and Brian R. Worth, <u>Department of Chemistry</u>, <u>University of British Columbia</u>, <u>2075 Wesbrook Place</u>, <u>Vancouver</u>, <u>B.C</u>. Canada; V6T 1W5

Oxidation of 4'-deoxyleurosidine with potassium permanganate provided the first synthesis of the alkaloid vinamidine (catharinine). Similar oxidation of leurosine or 3',4'-dehydrovinblastine gave 3'-hydroxyvinamidine.

The synthetic intermediate 3',4'-dehydrovinblastine (I) has been utilised in the syntheses of the alkaloids leurosine $(II)^{3,4}$ and catharine^{4,5} as well as for the preparation of numerous analogues of the "bisindole" alkaloids. This report describes an extension of this approach providing access to the alkaloid vinamidine $(III)^{6}$ and several derivatives with the seco-4',5'-skeleton.

-69-

A recent report by a French group⁶ described the isolation of the alkaloid catharinine (III) and showed its identity with vinamidine previously isolated by Lilly workers⁷. X-ray crystal analysis⁶ of a derivative enabled the assignment III in preference to that reported earlier⁷. Derivation of III from "bisindole"-type alkaloids within the vinblastine family implicated $C_4 \cdot -C_5 \cdot$ bond cleavage, a process which had been demonstrated in these laboratories during the course of potassium permanganate oxidation studies in this area.

Thus oxidation of either I or II with potassium permanganate in acetone solution gave, together with the lactams IV (10%) and V (19%)^{4,8}, a ketol (42%) (M⁺ 840.3966, $C_{46}H_{56}N_4O_{11}$; mp (methanol) 198 - 202°; IR 1660 cm⁻¹; 'Hmr δ: 3.97 (1H, bs, C₃'-<u>H</u>), 7.32 (1H, s, -N_L,C<u>H</u>0)) containing a formamide group. The product readily formed an acetate VI (M⁺ 882.4046, C48H58N4012; 'Hmr 6: 2.10 (3H, s, -OAc), 2.14 (3H, s, -OAc), 4.80 (1H, bs, C3'-H)) and cupric acetate oxidation gave the corresponding α -diketone VII (M⁺ 838.3770, C₄₆H₅₄N₄O₁₁; IR 1713 cm⁻¹). Reduction of the ketol with sodium borohydride gave a diol VIII (M⁺ 842.4060, $C_{46}H_{58}N_4O_{11}$) which was acetylated to IX (M⁺ 926.4331, C₅₀H₆₂N₄O₁₃; 'Hmr δ: 1.97 (3H, s, -OAc), 2.08 (3H, s, -OAc), 2.12 (3H, s, -0Ac), 4.41 (1H, t, J = 6 Hz, C₃'-H), 4.89 (1H, m, C₄'-<u>H</u>)). Oxidation of the ketol with sodium periodate gave an aldehyde X $(M^{+} 782.3484, C_{43}H_{50}N_{4}O_{10}; 'Hmr \delta: 9.20 (1H, s, -CHO)).$ The loss of a three carbon unit immediately confirmed the position of initial cleavage $(C_4'-C_5')$ and aldehyde formation indicated the 3'-hydroxy-4'-oxo-pattern XI. The 3'(R)-assignment XI was based on the assumption that the configuration at C_3 ' remained unchanged from that in leurosine (II).

The structural similarities between XI and vinamidine (III) suggested a possible transformation to the natural product. In this regard however, all attempts to deoxygenate the ketol were unsuccessful. At this point it was reasoned that a substrate of lower oxidation state than II might be oxidised by potassium permanganate, directly to III. Indeed oxidation, as above, of the readily available 4'-deoxyleurosidine (XII)⁹ gave the expected 19'-oxo-derivative XIII (11%) (M⁺ 808.4046, C46H56N409; IR 1640 cm⁻¹; 'Hmr δ : 4.84 (1H, m, C₂'-<u>H</u>)) together with a cleavage product (25%) ([α]_D -35⁰, 1it.⁶ -33⁰) identical with an authentic sample¹⁰ of vinamidine (III). Reduction of synthetic III with sodium borohydride in methanol gave the corresponding alcohol; [α]_D -78⁰, 1it.⁶ -80⁰.

-71-

Thus potassium permanganate oxidation of 4'-deoxyleurosidine (XII) provided the C_4 '- C_5 ' cleavage product vinamidine (catharinine) III, in complement to the C_2 '- C_{19} ' cleavage observed with <u>tert</u>-butyl hydroperoxide⁵.

Acknowledgements:

Financial aid from the National Research Council of Canada and from Contract NOI-CM-23223, National Cancer Institute, National Institutes of Health, Bethesda, Maryland is gratefully acknowledged. The authors also wish to thank the Lilly Research Laboratories, Indianapolis, for various alkaloid samples.

HETEROCYCLES, Vol. 11, 1978

References

- Part XIV. K.L. Stuart, J.P. Kutney and B.R. Worth, Heterocycles, 9 (1978) in press.
- A portion of this work was presented at the 16th National Medicinal Chemistry Symposium, American Chemical Society, Kalamazoo, Michigan, June, 1978.
- J.P. Kutney, J. Balsevich, G.H. Bokelman, T. Hibino,
 I. Itoh, and A.H. Ratcliffe, <u>Heterocycles</u>, <u>4</u>, 997 (1976).
- J.P. Kutney, J. Balsevich, G.H. Bokelman, T. Hibino,
 T. Honda, I. Itoh, A.H. Ratcliffe and B.R. Worth,
 <u>Can. J. Chem.</u>, <u>56</u>, 62 (1978); N. Langlois and P. Potier,
 J. Chem. Soc., Chem. Comm., 103 (1978).
- J.P. Kutney, J. Balsevich and B.R. Worth, <u>Heterocycles</u>, <u>9</u>,
 493 (1978).
- R.Z. Andriamialisoa, N. Langlois, P. Potier, A. Chiaroni and C. Riche, Tetrahedron, 34, 677 (1978).
- S. Tafur, W.E. Jones, D.E. Dorman, E.E. Logson and
 G.H. Svoboda, J. Pharm. Sci., 64, 1953 (1975).
- J.P. Kutney, J. Balsevich and G.H. Bokelman, <u>Heterocycles</u>,
 <u>4</u>, 1377 (1976).
- 9. J.P. Kutney, T. Hibino, E. Jahngen, T. Okutani, A.H. Ratcliffe, A.M. Treasurywala and S. Wunderly, <u>Helv. Chim. Acta.</u>, <u>59</u>, 2858 (1976).
- 10. The authors are especially grateful to Dr. Gordon Svoboda, Eli Lilly and Company, Indianapolis, Indiana, for providing a sample of vinamidine.

Received, 4th July, 1978

-73-