THE RADICAL IONS OF TETRAPHENYLTHIENOL3.4-cJTHIOPHENE

* **PERAPHENYLTHIENOL3,4-CJTHIOPHE**

<u>Peter</u> F<u>ürderer</u> and F<u>abian</u> Gerson,

isch-Chemisches Institut der Universität Basel, Physikalisch-Chemisches Institut der Universitat Basel, Klingelbergstrasse 80, 4056 Easel, Switzerland **Peter Fürderer and Fabian Gerson,**
Sikalisch-Chemisches Institut der Universität Base
Klingelbergstrasse 80, 4056 Basel, Switzerland
Michael P. C<u>ava</u> and M.V. Lakshmikantham
Department of Chemistry, University of Pennsyl

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.

The radical anion and the radical cation of $1,3,4,6$ **tetraphenylthiena[3.4-clthiophene** have been studied by ESR and ENWR spectroscopy. The coupling constants, $a_{H_p} \approx a_{H_p}$, of the phenyl protons in the para-, ortho- and meta-positions, respectively, suggest an angle $0 < 40^{\circ}$ of twist about the bonds linking the phenyl substituents with the thieno[3.4-c]thiophene moiety.

1,3,4,6-Tetraphenylthieno[3.4-c]thiophene, II, [1], is the only known stable derivative of thieno[3.4-c]thiophene, I, a **10-n-electron system which has aroused considerable interest [21. In the present paper we report on ESR and ENDOR studies of the radical ions of 11.**

- The radical anion, **11.** , was produced by reaction of **11** with potassium in 1,2-dimethoxyethane (DME), 2-methyltetrahydrofuran and a 5:l mixture of DME and hexamethylphosphoric triamide. In addition, it was generated by electrolytic reduction of **I1** in dimethylformamide with tetraethylammonium perchlorate as the sup porting salt. The radical cation, II.⁺, was prepared by oxidation of II with AlCl₃ in methylene chloride, as well as by dissolving II in a 10:1:1 mixture of CH_2Cl_2 , CF_3 COOH and (CF_3CO) ₂O. Both radical ions formed under the aforementioned conditions had a halflife of an order of hours.

Figure 1 shows the ESR spectra of II. and II.⁺, along with the corresponding computer simulated derivative curves. The proton coupling constants, $a_{H_{\rm O}}$, $a_{H_{\rm m}}$ and $a_{H_{\rm p}}$, used in this simulation are given in Table 1. Within the limits of t0.001 mT, their values remained unaffected by experimental conditions, except for a - significant temperature dependence observed for **11.** . The analyses of the spectra were confirmed by the records of the **ENDOR** proton signals which are displayed in Figure 2.

Table 1

Proton coupling constants (mT) for the radical ions of 1,3,4,6-tetraphenylthieno[3.4-clthiophene

 $-94-$

ESR spectra of the radical ions of $1,3,4,6$ -tetraphenylthieno[3.4-c]thiophene, **11. Top: experimental spectra. Anion, 11.** : **solvent, DME; counterion, K** ; temperature, 273 K. Cation, $I_{1}I_{2}$: solvent, $CH_{2}Cl_{2}$; temperature, 233 K. Bottom: **Spectra simulated with the use of the coupling constants listed in Table 1;** + **line-shape, Lorentzian; line-width, 0.013 111 and 0.004 mT 1**).

In each case, the identification of one value with the coupling Constant of the four equivalent phenyl protons in the parapositions (a_{H_D) followed from the multiplicity of the pertinent} **splitting in the ESR spectra, whereas the assignment of the two**

-95-

ENDOR spectra of 1,3,4,6-tetraphenylthieno^{[3.4-c]thiophene (II). Solvent and} counterion as for the ESR spectra in Figure 1; temperature, 193 (II.^T) and 233 K (II^{. $+$}); v_{H} = frequency of the free proton.

remaining values to the sets of eight equivalent protons in the ortho- and meta-positions (a_{H_Q} and a_{H_m} , respectively) was based on the arguments advanced below.

It has been pointed out [3] that the coupling constants a_{H_0} , $a_{\rm H_m}$ and $a_{\rm H_p}$, of the protons in a phenyl substituent, should markedly depend on the angle, θ , of twist about the bond linking the phenyl group with the r-center bearing the bulk of the spin population. When $\theta = 0$ (coplanar arrangement and π - π -interaction) the relationship $a_{H_D}\approx a_{H_D}$ is expected to hold, whereas for $\theta = 90^{\circ}$ (perpendicular arrangement and π - σ -interaction) one predicts that a_{H_p} << a_{H_o} \approx a_{H_m} . Moreover the absolute values of a_{H_o} and, in particular, those of a_{H_p} decrease on going from $\theta = 0$ to 90 $^{\rm O}$. In fact, the coupling constants $\rm a_{Hp}$ = 0.031 and $\rm a_{Ho}$, $\rm a_{Hm}$ =

 $-96 -$

0.082, 0.091 mT ¹⁾ were reported [4] for the 1,1-di-t-butylbenzyl radical ($\theta = 90^{\circ}$), as compared with $a_{\text{H}_\text{p}} = 0.619$, $a_{\text{H}_\text{O}} = 0.517$ and a_{H_m} = 0.177 mT [5] observed for the benzyl radical itself $(\theta = 0)$. In the case of the radical ions of 9-phenylanthracene and rubrene ($\theta \overset{\text{\textcirc}}{>} 60^0$) it has been found that $a_{H_D}\approx a_{H_D}\approx a_{H_m}$ [6]. The value of $a_{\rm Hp}$ is thus a sensitive criterion for the angle θ and therefore for the interaction between the π - and/or σ -orbitals of the phenyl group and the unpaired π -electron at the substituted center. The finding that the phenyl protons in the para positions of $II \cdot \bar{ }$ and $II \cdot \bar{ }$ exhibit relatively large coupling constants $a_{\rm Hp}^{}$ thus points to an angle $6\,\,{}^<$ 40 $^{\rm o}$ which still allows a considerable interaction between the phenyl- π -systems and the π spin populations at the substituted centers $1,3,4$ and 6 of the thieno $[3.4-c]$ thiophene moiety². This conclusion is supported by the HMO model of II in which the values $\alpha+\beta$ and 0.7β were adopted for the parameters α_S and β_{CS} respectively [7], while the parameter $\beta_{\dot{C}C}$ of the bonds linking the phenyl substituents with the centers 1,3,4 and 6 was taken as β cos θ with θ varying between 0 and 40° . The frontier orbitals, LUMO and HOMO, calculated with the aid of such a model $(\beta_{CC} = \beta)$ are depicted in Figure 3. Good correlation between the experimental values and the squared LCAO-coefficients at the pertinent π -centers (Table 2) is achieved

¹⁾ Assignment of $a_{H_{\Omega}}$ and $a_{H_{\overline{m}}}$ to protons in the individual positions was not secured.

 $-97-$

 27 . A steep decrease in the absolute values of a_{H_p} and a_{H_Q} is predicted to a_{max} is the manns 40% A t 70° [3] occur in the range 40° \leftarrow $8 \div 70^{\circ}$ [3].

Figure 3

The frontier orbitals, LUMO and HOMO, of **11.** The areas of the circles are proportional to the squares of the LCAO-coefficients. Blank and shaded areas symbolize opposite signs of these coefficients.

under the proviso that $a_{H_D} \approx a_{H_O} \gg a_{H_m}$. This result leaves no doubt that the assignment made in Table 1 is correct.

Also in line with the HMO model (large LCAO-coefficients at the two sulfur centers in LUMO and a nodal plane through these centers in HOMO) is the relatively high g factor of 2.0055±0.0001 for **II**. as well as the unexpectedly low value of 2.0019±0.0001 for $II.^{+3)}$.

Table 2

Squared LCAO-coefficients at the proton bearing phenyl n-centers in the frontier HMO's of **1.3.4.6-tetraphenylthieno[3.4-clthiophene**

3, The conspicuous features of the HOMO (Fig. 3) are the huge LCAO-coefficients at the substituted centers 1,3,4 and 6; they anticipate a very large coupling constant a_c for the 13 C nuclei in these carbon centers. In fact, satellite lines with $a_c = 1.08 \pm 0.05$ mT could be observed upon amplification ⁺of the ESR spectrum of **11'**

It is noteworthy that the upper limit, $\theta \approx 40^\circ$, estimated in the present work for II^{."} and II^{."} in solution, compares favorably with the lower of the two corresponding values determined by X-ray crystallographic study of II: $\theta = 39.6$ and 58.4 0 [8].

Acknowledgments

This work was supported by the Swiss National Science Foundation (project 2.711.77) and the N.S.F. of the U.S.A. (grant 78-00119).

References

- [I] M.P. Cava and G.E.M. Husbands, **J.** Amer. Chem. Soc., **91,** 3952 (1969); M.P. Cava, M. Behforouz, G.E.M. Husbands, and M. Srinivasan, J. Amer. Chem. Soc., **95,** 2561 (1973).
- [21 M.P. Cava and M.V. Lakshmikantham, Acc. Chem. **Res.,** 8, 139 (1975); C. Müller, A. Schweig, M.P. Cava, and M.V. Lakshmikantham, J. Amer. Chem. Soc., 98, 7187 (1976) .
- [31 J.A. Pople and D.L. Beveridge, J. Chem. Phys., 49, 4725 (1968).
- [4] K. Schreiner and A. Berndt, Angew. Chem. Int. Ed. Engl., 13, 144 (1974).
- [5] H. Fischer, Z. Naturforsch., 20a, 488 (1965).
- [61 R. Biehl, M. Plato, K. Mebius, and K.-P. Dinse, **XVII** Congress Ampere (V. Hovi, ed.), North-Holland Publishing Co., 1973, p. 423; R. Biehl, K.-P. Dinse, K. Möbius, M. Plato, H. Kurreck, and U. Mennenga, Tetra-K. Schreiner and A. Bern
H. Fischer, <u>Z. Naturfors</u>
R. Biehl, M. Plato, K. M.
(V. Hovi, ed.), North-Ho
K.-P. Dinse, K. Mõbius,
hedron, 29, 363 (1973).
F. Gerson and J. Heinzer hedron, 29, 363 (1973).
[7] F. Gerson and **J. Heinzer, Helv. Chim. Acta, 51, 366 (1968)**; F. Gerson,
- Ch. Wydler, and F. Kluge, J. Magn. Resonance, 26, 271 (1977).
- [8] M.D. Glick and R.E. Cook, Acta Cryst. Sect. B, 28, 1336 (1972).

Received, 2nd August, 1978