## SEMIDIONE DERIVATIVES OF SILACYCLOALKENES<sup>1</sup> G<u>len</u> A. R<u>ussell</u>,<sup>\*</sup> C. E. O<u>such</u>,<sup>2</sup> and W. C<u>hau</u><sup>3</sup> Department of Chemistry, Iowa State University Ames, Iowa 50011, U.S.A.

The structures of  $1 (X = CH_2)$  and  $2 (X = Si(CH_3)_2)$  have been studied by esr spectroscopy from -30 to +100°C. Ring inversion can be observed for the cis semidiones 2 (n = 2,3)and 1 (n = 3), but not for 1 with n = 2. Trans semidiones are observed for 2 (n = 3-5) and 1 (n = 4-6), but not for 1 with n = 3.

1,2-Semidiones are paramagnetic derivatives of alkenes from whose esr spectra information can be obtained on the occurrence of  $\underline{E}, \underline{Z}$ -isomers as well as conformational structure.<sup>4</sup> Herein we report the effect of substitution of  $(CH_3)_2Si \lt$  for  $CH_2 \lt$  in cyclic 1,2-semidiones.



The expectation that the larger radius of silicon would increase the probability for conformational motion and facilitate the

-165-

formation of a cyclic trans semidione has been realized.

The semidiones were formed by the treatment of the  $\alpha$ -hydroxy ketones or bis(trimethylsiloxy)alkenes with potassium dimsylate in Me<sub>2</sub>SO.<sup>5</sup> Solutions were diluted with THF for low temperature studies. For substrates with silicon  $\beta$  to the potential semi-dione function only acyclic semidiones could be observed, e.g.,

Si  
OAc  

$$K^{+-}CH_{2}SOCH_{3}$$
, |  
 $X-Si-CH_{2}CH_{2}C(-0^{+})=C(-0^{-})CH_{3}$   
 $trans, \underline{a}^{H} = 5.74 \text{ G} (3H), 4.81 \text{ G} (2H),$   
 $\underline{g} = 2.00506; \text{ cis}, \underline{a}^{H} = 6.99 \text{ G} (3H),$   
 $5.98 \text{ G} (2H), \underline{g} = 2.00495$ 

Semidiones with silicon  $\gamma$  or  $\delta$  to the spin label had stabilities comparable to their carbocyclic analogues.

Cycloheptane-1,2-semidione (<u>la</u>) exists as a staggered chairlike conformation up to 100°C with no indication of ring inversion, which would time average the quasi-axial and -equatorial hydrogen atoms (<u>E</u><sub>a</sub> > 7 kcal/mol).<sup>6</sup> The silicon analog <u>2a</u> shows conformational motion over the entire temperature range investigated (-30° - +100°C). At +90° the spectrum is a pentet of pentets from four time-averaged  $\alpha$ -hydrogen atoms (<u>a</u><sub>avg</sub><sup>H</sup> = 3.08 G) and four  $\beta$ -hydrogen atoms (<u>a</u><sub>avg</sub><sup>H</sup> = 0.95 G). Upon cooling to 25° the  $\alpha$ -hydrogen atoms are no longer time-averaged (<u>a</u><sub>ax</sub><sup>H</sup> = 4.0 G, <u>a</u><sub>eq</sub><sup>H</sup> = 2.0 G). The  $\beta$ -hydrogen atoms whose <u>a</u><sup>H</sup> values are closer in magnitude are still in the fast exchange mode at 25° to -30°C with the 2nd and 4th peak of the pentet broadened. The observed hfsc for <u>2a</u> are consistent with the chair-like conformation previously assigned to la.<sup>6</sup>

-166-





From line broadening an  $\underline{E}_{a}$  for ring inversion of  $\underline{2a}$  of 6.9 kcal/ mol is calculated. However, the chair-like conformation of  $\underline{2a}$ cannot undergo the concerted ring flip which is possible for cyclohexane-1,2-semidione ( $\underline{A\underline{H}}^{\dagger} = 4.0$  kcal/mol).<sup>7</sup> Dreiding models indicate that  $\underline{2a}$ , but not  $\underline{1a}$ , can be converted to the boat-like conformation which can undergo internal rotation to give ring inversion (Eq. 1).



The C<sub>9</sub> carbocyclic semidione <u>lb</u> is conformationally rigid on the esr time scale at 25°, and the rich hyperfine structure indicates a staggered chair-like conformation. Upon warming the hfs for  $\beta$ ,  $\gamma$ , and  $\delta$  hydrogen atoms are lost to give a triplet of triplets from the  $\alpha$ -hydrogen atoms which coalesces to a pentet at 110°. From peak separation  $\underline{E}_{\alpha}$  for ring inversion of 5.6 kcal/ mol is measured.

-167-



In the presence of 0.1 <u>M</u> K<sup>+</sup> a mixture of two semidiones is observed for the 9-membered ring silicon compound. These are identified as the <u>Z</u> (<u>g</u>=2.00494) and <u>E</u> (<u>g</u>=2.00507) isomers. Higher K<sup>+</sup> concentrations favor the ion-paired cis structure whose hfs pattern is consistent with a chair-like conformation. Warming causes a coalescence of the  $\alpha$ -hydrogen atoms with <u>E</u><sub>a</sub> = 2.9 kcal/mol measured for ring inversion from peak positions.

The thermodynamically more stable trans isomer can be observed free of the cis isomer in the presence of an excess of [2.2.2]cryptand, which prohibits stabilization of the cis structure by ion pairing.<sup>8</sup> The trans semidione shows hfs by two pairs of  $\alpha$ -hydrogen atoms ( $\underline{a}^{H} = 3.6$ , 2.3) at 50°. These hydrogens are not time averaged up to 100° excluding internal rotations (Eq. 2) as a facile process for trans-2b. Upon cooling the spectrum shows



selective line broadening with the wing peaks and center line remaining sharp to give a 1:2:1 spectrum at  $-30^{\circ}$ . We can only explain this observation by the assumption that the trans

semidione exists in a conformation containing four different  $\alpha$ -hydrogen atoms, e.g., 3 and 4, with a fortuitous overlap of intensity 2 at the center of the spectrum. Time averaging ( $\underline{E}_{a}$  < 3 kcal/mol) of 3 and 4 (Eq. 3) will produce the triplet of triplets observed at 50°. Conformational motion is still occurring at -30°.



The ll- and 13-atom semidiones exist in the <u>E</u>-configurations even in the presence of 0.1 <u>M</u> K<sup>+</sup>. However, even at 120°C the  $\alpha$ -hydrogen atoms are not time averaged (Eq. 2) in 10<sup>-8</sup> sec. Apparently one or more conformations with <u>C</u><sub>2</sub>-symmetry are involved.

Table 1. Large Ring Semidiones (Me<sub>2</sub>SO, K<sup>+</sup>)

| Semidione                        | Temp <sup>o</sup> C | <u>a</u> <sup>H</sup> values (Gauss) | <u>g</u> -value |
|----------------------------------|---------------------|--------------------------------------|-----------------|
| 2c                               | 25°                 | 8.79 (2H), 1.39 (2H), 0.30 (4H)      | 2,00507         |
| 2d                               | 25°                 | 7.19 (2н), 1.60 (2н)                 | 2.00509         |
| lc                               | 120°                | 5.81 (2н), 1.69 (2н)                 |                 |
| 2d                               | 120 <sup>0</sup>    | 6.39 (2H), 1.38 (2H)                 |                 |
| $\widetilde{\underline{l}}(n=6)$ | 25 <b>°</b>         | 7.10 (2H), 1.93 (2H)                 | 2.00508         |

There is some change in the conformational structure of the lland 13-membered rings with temperature since the larger hfsc increase and the smaller hfsc decrease and eventually disappear as the temperature decreases over the range + 120 to -  $60^{\circ}$  C.

-169-

ACKNOWLEDGEMENT We are grateful to Prof. W. Weber for a sample of the bis(trimethylsiloxy)alkene precursor to 2a,<sup>9</sup> and to Prof. P. Mazerolles for the acyloin precursors to  $2b^{10}$  and 2c,d.<sup>11</sup> REFERENCES

- 1. Application of ESR Spectroscopy to Problems of Structure and Conformation. Part 31.
- 2. National Science Foundation Fellow, 1975-1978.
- National Science Foundation Undergraduate Research Participant, June - August, 1978.
- 4. G. A. Russell, E. T. Strom, E. R. Talaty, K.-Y. Chang, R. D. Stephens, and M. C. Young, <u>Rec. Chem. Progress</u>, <u>27</u>, 3 (1966).
- 5. G. A. Russell and E. T. Strom, <u>J. Amer. Chem. Soc.</u>, <u>86</u>, 744 (1964).
- G. A. Russell, R. G. Keske, G. Holland, J. Mattox, R. S. Givens, and K. Stanley, J. Amer. Chem. Soc., 97, 1892 (1975).
- G. A. Russell, G. R. Underwood, and D. C. Lini, <u>J. Amer</u>. <u>Chem. Soc.</u>, 89, 6636 (1967).
- G. A. Russell, G. Wallraff, and J. L. Gerlock, <u>J. Phys.</u> <u>Chem.</u>, 82, 1161 (1978).
- W. P. Weber, R. A. Felix, A. K. Willard, and H. G. Boettger, J. Org. Chem., 36, 4060 (1971).
- R. A. Benkeser and R. F. Cunico, J. Org. Chem., <u>32</u>, 395 (1967).
- 11. P. Mazerolles and A. Faucher, <u>Bull. Soc. Chim. Fr.</u>, 2134 (1967); P. Mazerolles, A. Faucher, A. Laporterie, <u>ibid.</u>, 887 (1969).

-- 170---

Received, 24th August, 1978