10-MESITYL-9-ARSAANTHRACENE

Ruud J.M. Weustink, Pieter J.A. Gewrink, and Friedrich Bickelhaupt*

Scheikundig Laboratorium der Vrije Universiteit De Lairessestraat 174, Amsterdam-Z., The Netherlands

The highly sterically hindered, 10-mesityl-9-arsaanthracene (1c) has been prepared by pyrolysis of the dihydro-precursor 3.

Due to steric hindrance at the 10-position, 1c, is the most stable of all known derivatives of arsaanthracene; even the Diels-Alder reaction with maleic anhydride is slow and reversible at ambient temperatures, leading to the 9,10-adduct 4. At higher temperatures, an alternative Diels-Alder reaction yields the 1,4-adduct 5, the first known derivative of arsanaphthalene. The carbon analog 6 of 1c gives the corresponding 1,4-adduct 7.

It has been shown that substitution in the 10-position generally increases the stability of the 9-arseanthracene system $(1)^1$ towards dimerization and polymerization^{2,3}. More in particular, it has been observed that substituents with a broad range of electronic effects $(1, R=H^4, CH_3^2, C_2H_5^2, OCH_3^5, Cl^5, Br^5)$ do not confer sufficient stability on 1 to make it isolable at room temperature,

whereas R=aryl (1, R=C $_6$ H $_5$ (1 $_5$) 6 , p-CH $_3$ C $_6$ H $_4$ 7 , p-CH $_3$ OC $_6$ H $_4$ 7) does so in spite of the fact that the UV-spectra clearly indicate that the aryl groups are nearly perpendicular to the tricyclic system; the conclusion has been drawn that steric factors are predominant in determining the stability of 1.1.

R=H :
$$\frac{1}{4}$$

R=C₆H₅ : $\frac{1}{5}$

R=CH₃

CH₃

CH₃

In order to corroborate this hypothesis and thereby to obtain even more stable derivatives of 1, it was desirable to introduce still bulkier groups R in the 10-position of 1. As attempts to synthesize 10-t-butyl-9-arsaanthracene (1, $R=t-C_4H_g$) have failed so far 8, we undertook the synthesis of 10-mesityl-9-arsaanthracene (10).

Reaction of 2^7 with mesitylmagnesium bromide in ether/benzene gave 3 [94% yield; m.o. $209-211^{\circ}\mathrm{C}$; NMR (CDCl $_3$, $20^{\circ}\mathrm{C}$): 7.50-6.50 (m, 20, aryl-Hl, 3.95 (s, 2, CH $_2$), 3.11 (s, 2, CH $_2$), 2.31 (s, 3, p-CH $_3$), 3-1 p.p.m. (bs, 6, o-CH $_3$); at $-20^{\circ}\mathrm{C}$ tha latter signal was split in two: 3.0 (s, 3, o-CH $_3$) and 1.32 p.p.m. (s, 3,

o-CH $_{\rm a}$); coalescence at 0 $^{\rm O}$ C with a rotation barrier of 13.8 kcal/mol). When 3 was pyrolized in a flow system at 500°C in vacuo 1c was obtained in surprisingly good yield (56%; m.p. 150-152 $^{\rm o}$ C; UV (THF), $\lambda_{\rm max}$ (log ϵ): 386 sh (2.93), 406 (3.61), 429 (3.95), 455 nm (4.08); NMR (CDCl $_3$): 8.65-8.50 (m, 2, aryl-H), 7.85-7.67 (m, 2, aryl-H), 7.42-7.22 (m, 4, aryl-H), 7.05 (s, 2H, mesityl-H), 2.47 (s, 3, p-CH_q), 1.67 p.p.m. (s, 6, o-CH_q); mass spectrum m/e: found 358.0690, C22H19As calcd. 358.0703). The longest wavelength absorption of 10 is 4 nm more hypsochromic than that of $1b^6$, indicating even further reduced conjugation between the mesityl group and the tricyclic ring system; apparently, the two ortho methyl groups enforce a practically perpendicular position. The ¹H NMR absorption of the ortho methyl groups is strongly shifted upfield due to the shielding effect of the arsaanthracene system; a similar effect has been observed for the recently prepared 9 carbon analog § of 10. In accordance with the above-mentioned prediction, 1c proved to more stable than 1b; in a high vacuum system the UV spectrum of a solution of 1c in THF remained absolutely stable for weeks, whereas that of 1b irreversibly diminished after a few days. The reaction of 1c with oxygen (air), however, is instantaneous and not noticeably slower than that of other 1; this permits the conclusion that oxidation of arsaaromatic compounds is initiated by attack of oxygen at the arsenic atom.

As a further illustration of steric hindrance as the major cause of the high stability of 1c, its reactivity in the Diels-Alder reaction with maleic anhydride is remarkably reduced. While all other known derivatives of 1 add maleic anhydride at positions 9 and 10 in a reaction which at room temperature is complete and more or less instantaneous, the analogous reaction of 1c to 4 is reversible and slow; the kinetic and thermodynamic parameters of this equilibrium are under investigation. As dissociation is favoured at higher

temperatures, 4 is air-sensitive because of the formation of 1c; for both reasons we did not yet succeed in the purification of 4 by recrystallization or sublimation; it was obtained in quite pure form by heating in vacuo to 50° C, in order to remove excess of malsic anhydride (m.p. $124-126^{\circ}$ C (IR(KBr)): 1845,1770 cm⁻¹, NMR (CDCl₃): 7.91-7.60 (m, 2, aryl-H), 7.42-6.67 (m, 8, aryl-H), 5.06 and 3.34 (AB, J_{AB}^{π} 9 Hz, 2, π CH), 2.73 (s, 3, CH₃), 2.37 (s, 3, CH₃), 1.12 p.p.m. (s, 3, CH₃).

CH₃

$$\frac{1_{C}: \times = As}{6: \times = CH}$$
 $\frac{6: \times = CH}{165^{\circ}C}$

Above 165°C, 1c and maleic anhydride react in an alternative Diels-Alder fashion at positions 1 and 4 of 1c under formation of 5; at higher temperatures, this reaction is reversible. For this reason, we have not yet obtained 5 completely free of 1c, and the air-sensitivity of both compounds has thwarted attempts

for further purification. However, the structure of $\underline{5}$ follows unambiguously from its NMR spectrum (CDCl $_3$; compare also the NMR spectrum of \underline{Z}): 8.49-8.31 (m, 1, H $_a$), 7.82-7.20 (m, 3, H $_b$), 7.07 (s, 2, H $_c$), 6.78-6.53 (m, 2, H $_d$), 5.38-5.22 (m, 1, probably H $_a$), 4.42-4.24 (m, 1, probably H $_f$), 3.44, 3.14 (AB part of ABXY, J $_{AB}$ = 9 Hz, J $_{AX}$ \approx J $_{BY}$ = 3.5 Hz, 2, H $_g$), 2.43 (s, 3, CH $_3$), 1.79 (s, 3, CH $_3$), 1.67 p.p.m. (s, 3, CH $_3$). To our knowledge, $\underline{5}$ is the first known derivative of 1-arsanaphthalene.

In the anthracene system, 1,4-addition is seldom and restricted to cases with steric crowding in the meso-position 10 . It was therefore of interest to compare the behaviour of 1c with that of its carbon analog 6. As the Diels-Alder reaction of anthracenes occurs at higher temperatures than that of 1, the step of 9,10-addition between 6 and maleic anhydride to form the carbon analog of 4 was apparently by-passed; at 165° C, 7 was formed (m.p. $187-188^{\circ}$ C; IR (KBr): 1860, 1780 cm⁻¹; UV (${}^{\circ}_{2}$ H₅OH), λ_{max} (log ϵ): 291 (3.84), 279 (3.97), 269 (3.93), 254 nm (4.01); NMR (CDCl₃): 7.90-7.70 (m, 2, aryl-H), 7.50-7.10 (m, 3, aryl-H), 7.04 (s, 2, H_c), 6.80-6.57 (m, 2, H_d), 4.78-4.58 (m, 1, H_e?), 4.33-4.11 (m, 1, H_f?), 3.47, 3.22 (AB part of ABXY, $J_{AB} = 9$ Hz, $J_{AX} \sim J_{BY} = 3.5$ Hz. 2, H_g), 2.42 (s, 3, CH₃), 1.83 (s, 3, CH₃), 1.69 (s, 3, CH₃); on heating above its melting point, $T_{AB} \sim T_{AB} \sim T$

ACKNOWLEDGEMENT. This work was supported in part by the Netherlands Foundation for Chemical Research (S.O.N.) with financial aid from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

REFERENCES

1 C. Jongsma and F. Bickelhaupt, "Topics in Nonbenzoid Aromatic Chemistry", eds. T. Nozos, R. Breslow, K. Hafner, S. Ito, and I. Murata, Hirokawa

Publishing Co., Tokyo, 1977, Vol. II, p. 139.

- 2 H. Vermeer, Thesis, Vrije Universiteit, Amsterdam, 1973.
- 3 Cf. also H. Vermeer and F. Bickelhaupt, Tetr. Letters, 1970, 1007;
- F. Bickelhaupt, R. Lourens, H. Vermeer, and R.J.M. Weystink, <u>Rec. Trav.</u> Chim. Pays-Bas, 1978, <u>97</u>, in press.
- 4 P. Jutzi and K. Deuchert, Angew. Chem., 1969, 81, 1051; H. Vermeer and
- F. Bickelhaupt, Angew. Chem., 1969, 81, 1052.
- 5 R.J.M. Weustink, C. Jongsma, and F. Bickelhaupt, Tetr. Letters, 1975, 199.
- 6 H. Vermeer and F. Bickelhaupt, Tetr. Letters, 1970, 3255.
- 7 R.J.M. Weustink, C. Jongsma, and F. Bickelhaupt, Rec. Trav. Chim. Pays-Bas, 1977, 96, 265.
- 8 R.J.M. Weustink, Thesis, Vrije Universiteit, Amsterdam, 1977, and unpublished results.
- 9 B. Bock, M. Kuhr, and H. Musso, Chem. Ber., 1976, 109, 1184.
- 10 J.W. Cook and L. Hunter, J. Chem. Soc., 1953, 4109.

Received, 1st September, 1978