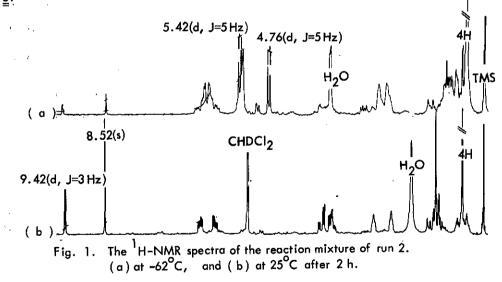
14 14

LOW-TEMPERATURE CHARACTERIZATION OF A DIOXETANE PRODUCED IN THE SENSITIZED PHOTOOXYGENATION OF A VINYLCYCLOPROPANE, 3, 10-DISPIROCYCLOPROPYLTRICYCLO[5.2.1.0^{2,6}] DECA-4,8-DIENE

H<u>itoshi</u> T<u>akeshita</u>*, T<u>oshihide</u> H<u>atsui</u> and H<u>iroaki</u> M<u>ametsuka</u> Research Institute of Industrial Science, 86, Kyushu University;


Hakozaki, Fukuoka 812 Japan

The sensitized photooxidation of the title olefin at -80° C was, contrary to the results of the reaction at room temperature, shown to afford only the dioxetane and its cleavage product, regardless of the sensitizers and the solvent used. Low-temperature characterization of the product by means of ¹H- and ¹³C-NMR as well as some chemical transformations confirmed the occurrence of the (2+2) $\tilde{\kappa}$ cycloaddition mode in the singlet oxygen oxidation of vinylcyclopropanes.

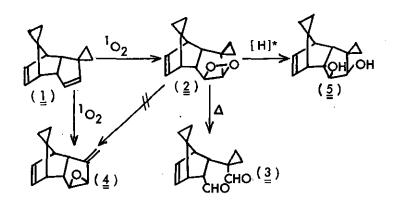
Recently, we have demonstrated that <u>cis</u>-1,2-glycols obtained by Rose Bengal (RB)sensitized photooxygenation of vinylcyclopropanes have been derived from corresponding dioxetanes.^{1,2)} Although some dioxetanes are shown to be quite stable during the usual work up, intensive efforts to isolate these particular dioxetanes from vinylcyclopropanes were unsuccessful. The ¹H- and ¹³C-NMR spectral characterization of such dioxetane will be described herein for the first time together with the results of both chemical and photochemical reductions.

When a dichloromethane- d_2 solution of Methylene Blue (MB) and 3, 10-dispiro-

cyclopropyltricyclo [5.2.1.0^{2,6}] deca-4,8-diene ($\underline{1}$, 3-10 mg for each run) was irradiated by a tungsten lamp at -80°C (Runs 1 and 2), a formation of only two products was identified on thin-layer chromatograms. The major product ($\underline{2}$) gradually changed into the minor product which was identified to be the previously characterized dial ($\underline{3}$).³⁾ Therefore, $\underline{2}$ must be the dioxetane. According to the NMR spectrometry, the ratio of $\underline{2}:\underline{3}$ immediately after the reaction was <u>ca</u>. 8:1, and the ¹H-NMR signals of $\underline{2}$ were compatible to the formulation; especially, a pair of doublets [$\delta^{CD_2Cl_2}:4.76(1H, d, J=5$ Hz) and 5.42(1H, d, J=5 Hz)] should be a firm evidence. The ¹³C-NMR[$\delta^{4}:5.9, 7.9,$ 11.3, 15.3, 30.0, 46.4, 49.9, 51.9, 57.2, 58.1, 90.0, 98.4, 133.2 and 138.3] also supported the dioxetane structure.⁵⁾ Fig. 1 is disclosing a quantitative conversion of $\underline{2}$ to $\underline{3}$.

This conversion was very rapid; more than 30 % of $\underline{2}$ changed to $\underline{3}$ within 20 min by a gradual warm up of the dichloromethane-d₂ solution to 0°C.

When $\underline{1}$ was oxygenated in dichloromethane $\underline{-d}_2$ and pyridine $\underline{-d}_5(1:1)$ at -80° C (Run 3), the products were $\underline{2}$ and $\underline{3}(\underline{ca}, 1:1)$. At 25° C, the product in pyridine was solely a vinyloxirane, $\underline{4}^{3}$. This temperature dependence for formation of $\underline{4}$ is remarkable,


•

and the lower limit of temperature to form $\underline{4}$ was below $-40^{\circ}C(Runs 4, 7, 8 \text{ and } 9)$. But, $\underline{2}$ must not be a precursor of $\underline{4}$ because additions of aliquots of pyridine- \underline{d}_5 at various temperatures (-80° to $25^{\circ}C$) into solutions of $\underline{2}$, which was obtained by Run 1, resulted in an exclusive formation of $\underline{3}$ in each time. The conversion of $\underline{2}$ to $\underline{3}$ was accelerated by pyridine (Runs 3, 7 and 9). In addition, when $\underline{1}$ was photooxygenated with RB in a hydroxylic solvent, methanol- \underline{d}_4 , at - $30^{\circ}C$, the cis-glycol ($\underline{5}$)¹ was formed in nearly quantitative yield (Run 6). Improvement of the yield at low temperature should be due to an increase of stability of $\underline{2}$. Table 1 shows the product distributions of the oxygenation.

			•		-	~	
Runs	Sensitizers	Temperature (°C) Solvents	% of Products			
				<u>2</u> [·]	<u>3</u>	<u>4</u>	<u>5</u>
1	МВ	-80	CD ₂ Cl ₂	85	15		
2	MB	-80	CD2CI2	88	12		
3	RB*)	-80	$C_5D_5N:CD_2Cl_2(1:1)$	50	50		
4	MB	-40	CDCl ₃	65	22	13	
5	MB	-40	CD ₃ OD:CDCl ₃ (3:1)	83	17		
6	RB	-30	CD3OD				100
7	RB	-30	C ₅ D ₅ N	+	25	75	
8	MB	0	CDCI3	45	30	25	
9	RB	0	C ₅ D ₅ N		5	95	

Table I.	The Product	Distributions of Le	ow Temperature	Photooxygenation of	: 1	•

*) 18-Crown-6 was added to dissolve the sensitizer.

-325-

Reduction of $\underline{2}$ to $\underline{5}$ was also accessible by chemical means. When $\underline{2}$ (obtained by Run 2) was kept with an excess of thiourea⁶⁾ in a mixed solution of dichloromethane-d₂ and methanol-d₄ for overnight at -30° to -10°C, $\underline{5}(10\%)$ was obtained together with isomerized $\underline{3}(90\%)$. On the other hand, the reduction by dimethyl sulfide yielded very complicated mixture, from which, only $\underline{5}(20\%)$ was isolated by silica gel chromatography. The reduction by diphenyl sulfide was again complicated one; $\underline{5}(\text{less than } 5\%)$ and $\underline{3}$ (70%) were only the isolated products after repeated chromatography.

In conclusion, present results constitute the first direct evidence for occurrence of a $(2+2)\hat{l_{L}}$ cycloaddition in the reaction of singlet oxygen with vinylcyclopropanes. This type of olefins can be now regarded as one of the simplest dioxetane-forming substrates, which may even possess an allylic hydrogen capable for the ene-reaction.⁷⁾

References and Notes

- 1) H. Takeshita and T. Hatsui, J Org. Chem., 43, 3080 (1978).
- 2) H. Takeshita, T. Hatsui, and I. Shimooda; Tetrahedron Lett., 2889 (1978).
- 3) H. Takeshita, T. Hatsui, and H. Kanamori, Tetrahedron Lett., 1697 (1973).
- 4) This was measured in a mixed solution of $CDCl_3$ and $CD_3OD(3:2)$ at $-40^{\circ}C$.
- K. R. Kopecky, J. E. Filvy, C. Mumford, P. A. Lockwood, and J. -Y. Ding, Can. J. Chem., 53, 1103 (1975).
- 6) C. Kaneko, A Sugimoto, and S. Tanaka, Synthesis, 867(1974).

7) Most of the hitherto examined tetrasubstituted cage olefins, the other dioxetane-forming alicyclic olefins, lack the hydrogen capable for the ene-reaction. In this respect, 2bornylidene-2-bornanes(H. Takeshita, T. Hatsui, and O. Jinnai, Chemistry Lett., 1059 (1976)) are rare exceptions.

Received, 1st September, 1978