## SYNTHESIS, STRUCTURE AND PROPERTIES OF METHYL-AZULENO[1,8-cd]-PYRIDAZINES<sup>+</sup>

## Klaus Hafner<sup>+</sup>, Hans Jörg Lindner and Werner Wassem<sup>+</sup> Institut für Organische Chemie der Technischen Hochschule Petersenstrasse 22, D-6100 Darmstadt, Germany

N-Substituted 2H-cyclopenta[d]pyridazines (6) possessing methyl groups in 1- and/or 4-positions are easily deprotonated by strong bases to anions of type (7) which react with derivatives of  $\beta$ -dicarbonyl compounds to the substitution products (11) and (17). Cyclization of these in the presence of acids afford 1,3,5-trimethyl- and 1,3-dimethylazuleno[1.8-cd]pyridazine (12) and (18). The structure of the novel heterocyclic azulenes was determined by spectroscopic methods as well as by an X-ray analysis of (12).

Detailed information about the influence of heteroatoms in the perimeter on bonding character and reactivity of nonbenzenoid  $\pi$ -electron systems are desirable for experimental support of quantum chemical predictions as well as for the synthesis of new heterocycles with interesting properties<sup>1</sup>.

+ Dedicated with best wishes to Professor Tetsuo Nozoe at the occasion of his 77th birthday.

-387-

In analogy to the synthesis of numerous nonbenzenoid polycyclic conjugated hydrocarbons as e.g. cyclopent[cd]azulene (1), aceheptylene (2), pentaleno[6.1.2-def]heptalene (3) or azuleno-[8.1.2-def]heptalene (4)<sup>2</sup> by peri-anellation of one or two 5- or



7-membered rings to azulene, aza-analogues of these  $\pi$ -electron systems should be accessible by similar synthetic routes, starting from 2H-cyclopenta[d]pyridazine (6) (R=H) which resembles azulene in its reactivity.

(6) (R=H) and several of its derivatives are easily synthesized by condensation of 1-acy1-6-dialkylamino- or 1-acy1-6-hydroxyfulvenes (5)<sup>3</sup> with hydrazine or its monoalky1~ or monoary1 derivatives or by N-alkylation of the corresponding 2H-cyclopenta-[d]pyridazines in the presence of base<sup>4</sup>.

-388-



X : R<sub>2</sub>N, OH ; R : H , alkyl, aryl

Like azulenes<sup>5</sup> also (6) is substituted by electrophilic reagents in the 5-membered ring, mainly in 5- and/or 7-positions<sup>6</sup>. Furthermore, methyl groups in the electron deficient 1- and 4-positions of (6), similar to those in 4-, 6- and 8-positions of azulene<sup>5</sup>, are easily and reversibly deprotonated by base under formation of resonance stabilized anions, e.g. (7), which react with electrophiles



to substitution products of type  $(8)^{6a}$ . In agreement with these findings the 1,2,4-trimethy1-2H-cyclopenta[d]pyridazine  $(9)^{6a}$  (obtained by condensation of 1-acety1~6-hydroxy-6-methy1-fulvene<sup>7</sup> with hydrazine in ethanol and N-methy1ation of the first formed



1,4-dimethyl-2H-pyridazine with methyl iodide in the presence of base) after deprotonation with lithium diisopropylamide in ether  $(2h, 25^{\circ}C)$  to the anion (7a) (pale yellow needles) reacted with 1,1-dimethoxybutane-3-one (10) in tetrahydrofuran (4h,  $25^{\circ}C$ ) to the yellow acetal (11). The intramolecular condensation of (11) with phosphoryl chloride (in ether at  $28^{\circ}C$ , 1h) afforded

-390-

65 % of the thermodynamically stable 1,3,5-trimethylazuleno[1,8cd]pyridazine (12) (deep blue needles, m.p.  $120^{\circ}$ C (ethyl acetate); uv (n-hexane),  $\lambda_{max}(10g\varepsilon)$ : 229(4.53), 250(4.56), 282(4.13), 349 (4.01), 362(4.05), 366(4.05), 404(2.87), 578(sh 2.66), 618(2.81), 677(2.81), 753nm(2.51)).

The structure of (12) was confirmed by a single crystal X-ray analysis, which excludes the alternative constitution (15) with an azulenoquinone structure, which should result from a condensation of (9) with the  $\beta$ -ketoacetal (10) at the methyl group in



4-position to (14) and subsequent cyclization. In agreement with this the <sup>1</sup>H-NMR-spectrum of (12) (CDCl<sub>3</sub>) exhibits signals at  $\delta$ : 6.98(d, J=11Hz, 7-H), 6.83(d, J=4Hz, 9-H), 6.62(d, J=4Hz, 8-H), 5.63(s, 4-H), 5.40(q, J=11 and 1Hz, 6-H), 3.40(s, N-CH<sub>3</sub>), 2.17 (s, 1-CH<sub>3</sub>), 2.03(d, J=1Hz, 5-CH<sub>3</sub>). In 2N H<sub>2</sub>SO<sub>4</sub> (12) is reversibly protonated to the green conjugate acid (13).

-391-

the state of the s

In a similar reaction sequence as that leading to (12), (18) (blue crystals, m.p. 140-141<sup>O</sup>C from ethyl acetate) could be obtained by deprotonation of (9) with sodium N-methylanilide (in ether, 1h,



 $25^{\circ}$ C), condensation with the vinylogous amidinium perchlorate (16) (in tetrahydrofuran , 2 h,  $25^{\circ}$ C) to the yellow green dienamine (17) and subsequent cyclization with hydrogen bromide in acetic acid (15 min. at  $40^{\circ}$ C). (18) corresponds in its <sup>-1</sup>H-NMR-spectrum ( $\delta$ : 7.18(d, J=10.2Hz, 7-H), 6.88(d, J=3.9Hz, 9-H), 6.67(d, J= 3.9Hz, 8-H), 6.37(d,d,d, J=12.0, 8.7 and 1.1Hz, 5-H), 5.66(d, J= 12.0Hz, 4-H), 5.46(d,d, J=10.2 and 8.7Hz, 6-H), 3.25(s, N-CH<sub>3</sub>), 2.07(s, 1-CH<sub>3</sub>)) and its uv spectrum (n-hexane) ( $\lambda_{max}(\log \epsilon)$ : 241 (4.52), 281(4.00), 347(4.02), 362(4.06), 387(2.93), 403(2.61),

-392-

41o(2.84), 587(2.69), 635(2.87), 7oo(2.89), 76o(2.46), 785nm(2.64)) to the trimethyl derivative (12).

The result of the single crystal X-ray analysis identifying (12) as 1,3,5-trimethylazuleno[1,8-cd]pyridazine is shown in fig.  $1^8$ . Bond lengths and bond angles calculated from the final parameters (last R value 0.11) are compiled in fig. 2. Least-squares planes of the molecule and the deviations of the atomic positions from these planes are given in table 1.



Fig. 1: Molecular structure of (12)

The planar molecule displays alternating bond lengths, with exception of the delocalized five-membered ring. This alternance is very similar to that of the isoelectronic 3,5,8,10-tetramethylaceheptylene (19)<sup>9</sup>.





Fig. 2: Bond lengths and bond angles of (12) in pm and degrees  $(\sigma_{XX} = 1pm, \sigma_{CH} = 9pm, \sigma_{XXX} = 0.6^{\circ}, \sigma_{XXH} = 4^{\circ}, X = C,N)$ 

| Table l | : Least-squar | es planes of (1 | 2) in orthogor | nal pm space  |
|---------|---------------|-----------------|----------------|---------------|
|         | with deviat   | ions of the ato | mic positions  | from these    |
|         | planes in p   | m               |                |               |
|         | Equations o   | f the planes: P | X + QY + RZ =  | S             |
| ,       | 1             | 2               | 3              | 4             |
| P       | ~0.0731       | -o.o685         | -0.0724        | -0.0798       |
| 0       | 0.3183        | 0.3222          | 0,3260         | 0.3124        |
| R       | 0.9452        | 0.9442          | 0.9426         | 0.9466        |
| s       | 307.9         | 310.0           | 311.5          | 305.5         |
|         | Deviations    | of the atomic p | ositions out   | of the planes |
| N(1)    | -0.5          |                 |                | o.5           |
| N(2)    | -0.8          |                 |                | o.4           |
| C(3)    | -0.6          | -1.4            |                | -0.4          |
| C(4)    | 1.4           | 0.5             |                |               |
| C(5)    | 1.2           | o.7             |                |               |
| C(6)    | -1.0          | -0.5            |                |               |
| C(7)    | -1.6          | -0.6            |                |               |
| C(8)    | -o.1          | o.7             | 0.1            |               |
| C(9)    | o.2           |                 | 0.4            |               |
| C(1o)   | o.3           |                 | -0.6           |               |
| C(11)   | 2.3           |                 | 0.6            | 1.2           |
| C(12)   | -1.2          |                 |                | -1.3          |
| C(13)   | 0.5           | 0.6             | -0.4           | -0.4          |
| C(14)   | -3.8          |                 |                |               |
| C(15)   | 0.1           |                 |                |               |
| C(16)   | -0.4          |                 |                |               |

Angles between the planes

| 1 | 3 | o.3 <sup>0</sup>  |
|---|---|-------------------|
| 2 | 4 | o. 9 <sup>0</sup> |
| 3 | 4 | o.9 <sup>0</sup>  |

Bond lengths derived from the  $\pi$ -bond orders calculated by a  $\pi$ -SCFmethod using standard relations<sup>10</sup> and modified equations that take in account the observed bond shortening of about 1 %

$$r_{\mu\nu}^{CC} = 149.4 - 17.4 p_{\mu\nu} (pm)$$
  

$$r_{\mu\nu}^{CN} = 143.1 - 17.8 p_{\mu\nu} (pm)$$
  

$$r_{\mu\nu}^{NN} = 140.0 - 17.7 p_{\mu\nu} (pm)$$

are shown in fig. 3. The results of calculation and experiment agree fairly well. Only the alternance of the bond lengths in the 7-membered ring is underestimated in the calculations.



Fig. 3: Calculated bond lengths of (12) using standard relations<sup>10</sup> and the relations given in this paper (underlined values)

Crystal data: dark blue needles,  $C_{14}H_{14}N_2$ , M = 210.3, monoclinic, space group  $P2_1/n$  with a = 1878(1), b = 836.3(5), c = 744.0(5) pm,  $\beta = 103.50(5)^{\circ}$ , V = 1136.5x10<sup>6</sup>pm<sup>3</sup>, Z = 4,  $D_X = 1.229$  g cm<sup>-3</sup>.

Table 2: Structure parameters of (12)

anisotropic temperature factors in the form

 $\mathbf{T} = \exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}1^2 + 2\beta_{12}hk + 2\beta_{13}h1 + 2\beta_{23}k1)]$ 

| ATON    | X/A       | 8/8       | 2/2         | , n <sup>a</sup> | B22        | ور <sup>م</sup><br>33 | 8 <sub>12</sub> | B <sub>13</sub> | 823<br>23  |
|---------|-----------|-----------|-------------|------------------|------------|-----------------------|-----------------|-----------------|------------|
|         | 1516960-0 | 0-1482461 | 0-4352(8)   | 0-0048121        | 0*0114(E)  | 0.0201(17)            | 0.0018(4)       | 0.0026(5)       | 0.0034(9)  |
| N(2)    | 0.0225(3) | 0.2697(6) | 0.3521(8)   | 0. 003812)       | 0-0113(8)  | 0.0191(16)            | -0*0004(3)      | 0.0031(4)       | 0+0002 [9] |
| 613     | 0-0301(3) | 0.4229161 | 0.3003(8)   | 0+0034(2)        | 0.0104(9)  | 0.0110(17)            | 0,0000[4]       | 0-0021(5)       | 0.0002(9)  |
|         | 0-9643(3) | 0-5150(7) | 0.217119)   | 0.0033121        | 0.0145(10) | 0.0112(18)            | 0-000714)       | 0.0016(5)       | -0,0006(10 |
|         | (E10049-0 | 0-6653(7) | 0.1565(9)   | 0.0037(2)        | 0.0149(11) | 0.0122(18)            | 0,0023(4)       | 0.0015(5)       | 11)6100 0- |
| (9)     | 0.0162(4) | 0.7816(7) | 0.1532(10)  | 0+0052(3)        | 0+01136110 | 0.01891221            | 0-0013(4)       | 0.0034[6]       | 0.0034(11  |
| 55      | 0.0894141 | 0-7670171 | 0.2149(10)  | 0.0053(3)        | 0-0104(9)  | 0.0172(20)            | -0.0012(5)      | 0.0043[6]       | 0.0008(11  |
|         | 0-1299131 | 0.6337(7) | 0.29901101  | 0-0032(2)        | 0.0137(10) | 0.0181(20)            | -0.0013(4)      | 0.0025151       | -0.0027(11 |
|         | 0-2062141 | 0.6203(5) | C. 3640(11) | 0* 0035(3)       | 0.0206(14) | 0+0290(24)            | -0-0021[5]      | 0.0012(6)       | -0.0031(15 |
| 61103   | 0.2247(3) | 0.4703(9) | 0.4353(1)   | 0.0023(2)        | 0.0256[16] | 0+0251(23)            | -0.0001(5)      | 0. 0005151      | -0+041(15  |
|         | 0-1615631 | G_3814(6) | 0.4225(9)   | 0+0033(2)        | 0.0161(11) | 0.0166(20)            | 0.0010(4)       | 0-0020151       | -0-0014(11 |
|         | 0-146714  | 0.2230(7) | 0.4660(9)   | 0.0045(3)        | 0-0146(11) | 0.0141(19)            | 0.0023(5)       | 0.0028(6)       | 0.0027{11  |
| 613     | 0.1007(3) | 0.4814(6) | 0.3348(9)   | 0+0034(2)        | 0.0108(8)  | 0.0125(18)            | -0*0005(4)      | 0.0023(5)       | -0-0020(9) |
|         | 0-7054141 | 0.3934(c) | G. 0524(11) | 0,0045(3)        | 0-0201(13) | 0= 0264(24)           | -0+0045(5)      | 0.0020(7)       | -0.0062[14 |
|         | 0.9483131 | 0.1941171 | 0-3242(10)  | 0.0041(3)        | 0.0125(10) | 0.0219(22)            | -0+0021(4)      | 0.0042(6)       | 0.0020111  |
| C (1 61 | 0.8830(4) | 0.7271(9) | 0*0709(10)  | 0-0044(3)        | 0-0204(14) | 0*01981201            | 0-0040151       | 0.0015(6)       | -0-0013(13 |
| (+)H    | 0.916(3)  | 0.456(7)  | 0.218(9)    |                  |            |                       |                 |                 |            |
| HIGO    | 0.501(3)  | 0.391(7)  | 0.434(9)    |                  |            |                       |                 |                 |            |
| H(7)    | 0-114(3)  | C.850181  | 0.178(9)    |                  |            |                       |                 |                 |            |
| HI91    | 0.240(3)  | 0.713(8)  | 0.354(9)    |                  |            |                       |                 |                 |            |
| HILD    | 0.265131  | 0.429171  | 0.503(9)    |                  |            |                       |                 |                 |            |
| H(141)  | 0.738(3)  | 0,341(8)  | 0.134(10)   |                  |            |                       |                 |                 |            |
| H(142)  | 0.691(3)  | 0.468(8)  | (6) [60*0   |                  |            |                       |                 |                 |            |
| H(143)  | 0.238(3)  | 0.076(8)  | 0.458(10)   |                  |            |                       |                 |                 |            |
| (121)H  | 0.953(3)  | 0.10718)  | 0,383(10)   |                  |            |                       |                 |                 |            |
| H(152)  | 0.925(3)  | Q.179(8)  | 0-178(10)   |                  |            |                       |                 |                 |            |
| H(153)  | 0.919(3)  | 0.270(8)  | 0.436(9)    |                  |            |                       |                 |                 |            |
| H(161)H | 0.874(3)  | 0.788181  | 0.174(10)   |                  |            |                       |                 |                 |            |
| H(162)  | 0.848(3)  | 0.656(8)  | 0-057191    |                  |            |                       |                 |                 |            |
| H(163)  | 0.879(3)  | 0.785(8)  | -0*036(10)  |                  |            |                       |                 |                 |            |

isotropic temperature factors for all hydrogen atoms:  $B = 4.0 \times 10^4 \text{ pm}^2$ 

 $D_o = 1.23(1) \text{ g cm}^{-3}, \mu = 5.8 \text{ cm}^{-1}.$ Structure determination and refinement: 1186 symmetry-independent reflections with  $|F| \ge 3\sigma_F$ , measured by use of  $Cu_{K\alpha}$ -radiation ( $\lambda = 154.18 \text{ pm}$ ), were used for structure determination by direct methods<sup>11</sup> and for the refinement by difference Fourier maps and least-squares calculations<sup>12</sup>.

Anisotropic refinement for the carbon and nitrogen atoms and isotropic refinement of the hydrogen positions yielded an R-value of o.11. The final parameters are listed in table 2.

Acknowledgement: We gratefully acknowledge support of this research by the "Deutsche Forschungsgemeinschaft", the "Fonds der Chemischen Industrie" and the "Dr. Otto Röhm-Gedächtnisstiftung".

## REFERENCES

- K. Hafner, <u>J. Heterocycl. Chem.</u> 1975, <u>12</u> (Suppl. Vol. 3), S-33.
- 2 K. Hafner, <u>Pure Appl. Chem.</u>, 1971, <u>28</u>, 153.
- 3 K. Hafner, K.H. Vöpel, G. Ploß, and C. König, <u>Liebigs Ann. Chem.</u>, 1963, <u>661</u>, 52; A.G. Anderson, Jr. and D.M. Forkey, <u>J. Am. Chem.</u> Soc., 1969, 91, 924.
- K. Hafner, K.H. Häfner, C. König, M. Kreuder, G. PloB, G. Schulz,
   E. Sturm, and K.H. Vöpel, <u>Angew. Chem.</u>, 1963, <u>75</u>, 1; <u>Angew.</u>
   <u>Chem. Int. Ed.</u>, 1963, <u>2</u>, 123; K. Hafner, <u>Pure Appl. Chem.</u>,
   1971, Suppl. <u>2</u>, 1.

- 5 T. Nozoe and S. Itô, in L. Zechmeister, <u>Progr. Chem. Org.</u> Nat. Prod., 1961, 19, 32.
- 6 a) K. Wagner, Dissertation Univ. München 1965; W. Wassem, Diplomarbeit TH Darmstadt 1973;
  - b) D. Lloyd and N.W. Preston, <u>J. Chem. Soc. (C)</u>, 1970, 610;
    H.L. Ammon, P.H. Watts, Jr., A.G. Anderson, Jr., D.M.
    Forkey, L.D. Grina, and Q. Johnson, <u>Tetrahedron</u>, 1970, <u>26</u>, 5707; A.G. Anderson, Jr., D.M. Forkey, and L.D. Grina, <u>J. Org. Chem.</u>, 1972, <u>37</u>, 3499; A.G. Anderson, Jr., D.M.
    Forkey, L.D. Grina, L.W. Hickernell, T. Tober, and M.T.
    Wills, J. Org. Chem., 1975, <u>40</u>, 2196.
- 7 W.J. Linn and W.H. Sharkey, J. Am. Chem. Soc., 1957, 79,
   4970; H. Dohm, Dissertation Univ. Marburg/Lahn 1958.
- 8 C.K. Johnson, ORTEP, a FORTRAN Thermal-Ellipsoid Plot Program for Crystal Structure Illustration, ORNL-3794, National Laboratory Oak Ridge, Tennessee 1965.
- 9 E. Carstensen-Oeser and G. Habermehl, <u>Angew. Chem.</u>, 1968,
  <u>80</u>, 564; <u>Angew. Chem. Int. Ed.</u>, 1968, <u>7</u>, 543; R. Quasba,
  F. Brandl, W. Hoppe, and R. Huber, <u>Acta Cryst.</u>, 1969, <u>B25</u>, *i*198.
- lo M.J.S. Dewar and T. Morita, <u>J. Am. Chem. Soc.</u>, 1969, <u>91</u>, 796.
- J. Karle and I.L. Karle, <u>Acta Cryst.</u>, 1966, <u>21</u>, 849;
   G. Germain and M.M. Woolfson, <u>ibid.</u>, 1968, <u>B24</u>, 91.
- 12 W.R. Busing, K.O. Martin, and H.A. Levy, ORFLS, a FORTRAN Crystallographic Least-Squares Program ORNL-TM-305, National Laboratory Oak Ridge, Tennessee, 1962.

Received, 14th September, 1978

-399-