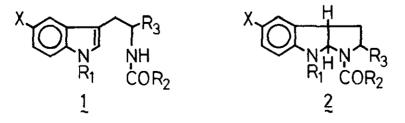
HETEROCYCLES, Vol.12, No. 1 , 1979

SYNTHESIS AND REACTIONS OF CYCLIC TAUTOMERS OF TRYPTAMINES AND TRYPTOPHANS.

BEHAVIOUR OF INDOLES IN ACIDIC MEDIA.


Tohry Hino, Mikio Taniguchi, and Akinori Gonsho

Faculty of Pharmaceutical Sciences, Chiba University, Chiba-shi, 280 Japan

1,2,3,3a,8,8a-Hexahydropyrrolo[2,3-b]indole(2) have been considered as possible tautomers of tryptamines and tryptophans(1). These cyclic tautomers(2) would undergo the Na-alkylation and the electrophilic substitution at the 5-position instead of the 2-and 6-positions in the indolic form(1). This may provide a general method for the preparation of the 5-substituted tryptophans, provided 2 reverts to 1 with ease. However, a general direct synthesis of 2 from 1 has not been known except $2(R_1, X=H, R_2=Me, R_3=CO_2Et)$ obtained by the catalytic hydrogenation of 1,2,3,8-tetrahydropyrroloindole.

When N_b -methoxycarbonyl-DL-tryptophan methyl ester was dissolved in 85% H_3PO_4 at room temperature for 3 hr followed by neutralization, a cyclic tautomer $2(R_1, X=H, R_2=OMe, R_3=CO_2Me)$, mp 104.5-106.5°, was obtained in 85% yield. The same compound was obtained in 70-85% H_2SO_4 or CF_3COOH . In a similar way N_b acetyt-L-tryptophan ethyl ester N_a -methyl- N_b -methoxycarbonyl-DL-tryptophan methyl ester, and cyclo-L-tryptophanyl-L-proline gave the corresponding cyclic tautomers(2). Cyclic tautomers(2, $R_1, X=H$) were stable in solid states but easily reverted to the indolic form(1) in MeOH-HCl or AcOH at room temperature. Na-Acetylation of 2 increased the stability toward acid, and a cyclic tautomer of N_b -methoxycarbonyltryptamine was isolated only after the N_a -acetylation.

The cyclic tautomer (2, R_1 X=H, R_2 =OMe, R_3 =CO₂Me) gave the N_a-methyl derivative(2, R_1 =Me) on treatment with CH₃I-acetone-K₂CO₃, and the N_a-dimethylallyl derivative of the indole type(1, R_1 =Me₂C=CHCH₂) by dimethylallyl bromide. Reactions of the cyclic tautomer (2, X=H, R_1 =Ac, R_2 =OMe, R_3 =CO₂Me) with NCS in AcOH gave the 5-chloro derivative(2, X=CI) in 93% yield which was converted to 1(X=CI, R_1 =H) on treatment with MeOH-H₂SO₄. Finally nitration of the cyclic tautomer with H₂SO₄-HNO₃ at room temperature gave the 5-nitro derivative(2, X=NO₂) in 79% yield at shorter reaction times and 5-nitro derivative of the indole type (1, X=NO₂) at longer reaction times.

