SYNTHESIS AND SPECTRAL PROPERTIES OF ZINC PORPHYRINS HAVING AMINO ACID RESIDUES

Runihiro Ichimura Research Institute for Polymers and Textiles Sawatari 4, Kanagawa-ku, Yokohama, Japan

Mesoporphyrin-IX monomethyl ester $(\underline{1})$, consisting of two geometrical isomers, was converted into acyl chloride, which was reacted with aromatic amino acid monomethyl esters like L-Phe-OMe, L-Tyr-OMe, L-Trp-OMe, and N^{im}-Bzl-His-OMe, followed by treatment with zinc acetate to give zinc complexes $(\underline{2a}, \underline{2b}, \underline{2c},$ and $\underline{2d})$ of the corresponding porphyrin monomethyl ester linked with amino acid residues by amide bonding. Tyramine was combined with $\underline{1}$ through amide bonding in the same manner to yield zinc complex of \underline{N} -[2-(p-hydroxyphenyl)ethyl]amide of 1 $(\underline{2e})$.

The characteristic features of the visible spectra of the zinc complexes can be divided into three groups; 1) no effect of amino acid residue of $\underline{2a}$ and $\underline{2c}$, 2) the red shift due to intramolecular ligand, imidazole, in 2d, and 3) the blue shift of the Soret band in $\underline{2b}$ and $\underline{2e}$ due to the dimer formation. The behavior of $\underline{2b}$ and $\underline{2e}$ is remarkable, since the dimer formation was observed even in highly diluted solution in toluene (ca. 10^{-6} M/1).

The NMR-spectra of $\underline{2b}$, in particular the meso-protons, were found to be almost insensitive to the concentration (0.02-0.09 M/1) in CDCl₃, whereas the meso-protons of $\underline{2a}$, $\underline{2c}$, and $\underline{2d}$ demonstrated the concentration dependence. The facts was interpreted in terms of the complete dimer formation of $\underline{2b}$ in the measurement conditions.

The ester C=0 of $\underline{2b}$ in the ir spectrum in $\mathrm{CH_2Cl_2}$ was split into two peaks at 1739 and 1721 cm⁻¹, while γ_{CO} of $\underline{2a}$, $\underline{2c}$ and $\underline{2d}$ were at ca. 1736 cm⁻¹. $\underline{2e}$, which has no methyl ester group derived from amino acid ester, showed hydrogen-bonded frequencies both ester and amide groups. The results revealed that there are two kinds of two hydrogen bondings between -CONH...O=C-OMe and -HNCO...HOØ-. The structure for the dimer was proposed, based on these results.

Aromatic amino acid residues demonstrated no influence on the fluorescence spectra of zinc porphyrin nucleus, excluding the case of $\underline{2d}$ which undergoes red shift owing to the intramolecular ligand. Furthermore, fluorescence quenching experiments were carried out, using oxygen and α -cyanostilbene as quenchers.