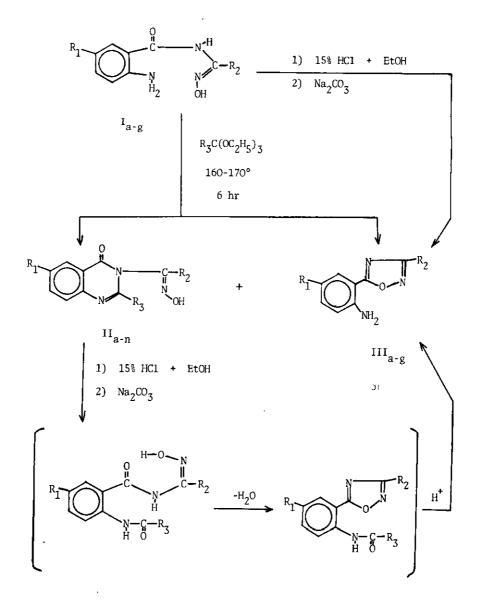
A SYNTHESIS OF 3-HYDROXYIMINOACYL-4-QUINAZOLINES AND TRANSFORMATION INTO 1,2,4-OXADIAZOLES

Katsuhiko Nagahara^{*} and A<u>tsushi</u> T<u>akada</u> School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

Treatment of N-hydroxyiminobenzyl-2-aminobenzamides (I) with ortho esters afforded the corresponding 2-alkyl-3-hydroxyiminoacyl-4-quinazolones (II) and 3,5-diaryl-1,2,4-oxadiazoles (III), respectively. Furthermore, treatment of II with ethanolic hydrochloric acid caused the ring transformation to give the corresponding III.

We have recently described that the alkali hydrolysis or the pyrolysis of N-hydroxyiminobenzyl-2-aminobenzamides gives the corresponding 3,5-diaryl-1,2,4-oxadiazole derivatives.¹ We now report should be syntheses of 2-alkyl-3-hydroxyiminoacyl-4-quinazolones (II) by reaction of N-hydroxyiminobenzyl-2-aminobenzamides (1) with ortho esters as well as a new ring transformation of II to 1,2,4-oxadiazoles (III).

Treatment of (Ia-g)(0.0078 mol) with triethyl orthoacetate (or triethyl orthopropionate)(25 ml) at 160-170° for 6 hr afforded 3,4-dihydro-4-oxoquinazoline derivatives in good yields, which were previously unknown, i.e., 2-alkyl-3-hydroxyiminoacyl-4-quinazolonenes (IIa-n), and a trace amount of 3,5-diaryl-1,2,4-oxadiazoles (IIIa-g)². The compounds (II)^{3,4} were isolated by evaporation of the reaction mixture and addition of petroleum benzine and water, while the compounds (III)⁵ were detected by TLC from the filtrate removed II (Table I).


Next, refluxing of (IIa-n)(0.003 mol) with a mixture of 15% hydrochloric acid (30 ml) and ethanol (30 ml) for 8 hr afforded

-239--

IIIa-g in good yields (Table II).

On the contrary, treatment of Ia-b with a mixture of 15% hydrochloric acid and ethanol under the same conditions provided IIIa-b, albeit in low yields (5%).

The ring transformation of II to III probably proceeds by initial hydrolysis of the pyrimidine nucleus and subsequent dehydration.

Scheme

Sta	rting	material	р	Der e der e t	N (80)	Recrystn.	N. 11(0)
	R ₁	R ₂	R ₃	Product	Mp(°C)	solvent	Yield(%)
Ia	Н	-0	СН3	IIa	245-247	EtOH-H ₂ 0	62
		_	C ₂ H ₅	ΙIb	236-237	EtOH-H ₂ O	70
Ιb	Н	-Ю- сн _л	CH ₃	IIc	235-237	EtOH-H ₂ O	57
		U v	с ₂ й ₅	IId	223-225	dmf - н ₂ 0	98
Ιc	Н	- () -C1	CH ₃	IIe	241-243	EtOH-H ₂ O	68
		—	с ₂ н ₅	IIf	255-256	EtOH-H ₂ O	62
Id	C1	-0)	СН ₃	IIg	218-219	EtOH-H ₂ O	50
		_	с ₂ й ₅	Ilh	226-228	EtOH-H ₂ O	71
Ie	C1	-(О)-снз	CH ₃	IIi	245-246	EtOH-H ₂ O	56
		<u> </u>	с ₂ й ₅	IIj	228-229	EtOH-H ₂ O	54
Ιf	Н		CH ₃	IIk	233-235	DMF-H ₂ O	35
		9	с ₂ й ₅	II1	245-246	DMF - H ₂ O	46
Ig	C1	-6)	CH3	- IIm	236-238	DMF-H ₂ O	31
		E /	с ₂ й ₅	IIn	222-224	DMF-H ₂ O	36

Table I 4-Quinazolones (II)

Table II 1,2,4-Oxadiazoles (III)

٠,

Starting material'	Product ^a	Mp(°C)	Yield(%)	
IIa	IIIa	130-132 ^b	68	
IIb	IIIa	130-132	66	
IIc	IIIb	151-152 ^C	81	
IId	IIIb	151-152	80	
IIe	IIIc	150-151	75	
IIf	IIIc	150-151	78	
IIg	IIId	183-185 ^d	86	
IIh	IIId	183-185	83	
IIi	IIIe	195-197	84	
IIj	IIIe	194-196	92	
IIk	IIIF	164-165	86	
III	IIIf	164-165	88	
IIm	IIIg	200-201	81	
IIn	IIIg	200-202	66	

```
a) All products were recrystallized from ethanol.
b) Lit.<sup>1</sup> 131-132°. c) Lit.<sup>1</sup> 152-153°. d) Lit.<sup>1</sup> 180-181°.
```

ACKNOWLEDGEMENT The author wish to thank Miss Noriko Ishiguro, the student of Kitasato University, for her skilled technical assistance, and also Dr.K.Senga of Keio University for helpful suggestion.

REFERENCE AND NOTES

1 K.Nagahara, K.Takagi, and T.Ueda, <u>Chem. Pharm. Bull. (Tokyo).</u>, 1975, <u>23</u>, 3178.

2 The structures of (II) were cofirmed by the spectral data and elemental analyses.

3 The compounds (IIIa-g) were identical in their TLC with the authentic samples prepared by the reported procedure. 1

4 For example, the spectral data for compound (IIa) are as follows. MS(m/e); 279(M^+), $IRv_{max}^{KBr}cm^{-1}$; 1690(C=O), 1630(C=N), 1600(C=C), $UV\lambda_{max}^{EtOH}nm(loge)$; 286(3.47), 295(3.50), 307(3.60), 318(3.50), NMR(DMSO-d₆): 2.30(3H, s, C-CH₃), 7.30-8.29(9H, m, aromatic), 12.35 (1H, s, N-OH).

5 The compounds (IIIc,e,f,g) were identical with the authentic samples prepared by the pyrolysis of compounds (Ic,e,f,g).

Received, 8th November, 1978