REACTIONS OF AZEPINE AND DIAZEPINE DERIVATIVES WITH CHLOROSILANES IN THE PRESENCE OF MAGNESIUM: 4,5-DOUBLE ADDITION REACTIONS TO AZEPINE DERIVATIVES

Katsuhiro Saito^{*} and Kensuke Takahashi¹ Department of Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan

Abstract — The reactions of 1-ethoxycarbonyl-lH-azepine (1) and chlorosilanes (Xa-c) in HMPA in the presence of magnesium afforded 1:2 adducts, <u>trans-4,5-disubstituted-4,5-dihydroazepines</u> (2a-c), which upon heating gave siloxane derivatives (3a-b) almost quantitatively. In the same reactions with 1-ethoxycarbonyl-lH-l,2-diazepine (8), a nitryl compound (9) was obtained. The dihydroazepines and the nitryl compound are considered to be formed via radical anions 5 and 10, respectively.

Addition reactions of chlorosilanes with olefins in the presence of magnesium in hexamethylphosphoramide (HMPA) have been attracting much attention because of synthetic utility for providing variable organosilanes.² 1,4-Double additions take place in the reactions of chlorosilanes with 1,3-dienes, and an interesting bicyclic product is obtained in the reaction with cyclooctatetraene.³ However, no such reactions with azepine or diazepine derivatives have been reported.

We investigated the reactions of 1-ethoxycarbonyl-lH-azepine (1) and 1ethoxycarbonyl-lH-l,2-diazepine (8) with chlorosilanes (Xa-c), in which 1:2 adducts (<u>trans-4,5-disubstituted-4,5-dihydroazepines</u>, 2a-c) and a nitryl compound (9) were obtained, respectively. We wish here to report the outline of these reactions.

When 1-ethoxycarbonyl-lH-azepine (1) and 2.5 mol equiv. of dimethyldichlorosilane (Xa) were reacted in the presence of 1.5 mol equiv. of magnesium in HMPA at r. t. for 16 hr, a 1:2 adduct (2a, mp 100°C) was obtained in 35 % yield. Under the same conditions as above, 1 reacted with diphenyldichlorosilane (Xb)

-263-

and trimethylchlorosilane (Xc) to give the same type of adducts (2b, oil and 2c, oil) in 54 and 40 % yields, respectively. Upon heating, the adducts 2a and 2b gave the siloxane derivatives 3a (oil) and 3b (mp 175°C) in almost quantitative yields, respectively. The NMR spectral data of these products are summarized in the Table, and the other spectral data are shown below.⁴

Table. NMR Spectral Data of 2 and 3

	Chemical Shifts (👌 ppm)									Coupling Constants (Hz)	
	E CH ₃	ster ^{CH} 2	SiMe		ОН (2Н)	SiPh (20H)	^Н а (2Н)	^Н ь (2Н)	Н _с (2Н)	^J ab	J _{bc}
2a ¹⁾	1.4	4.3	0.1 (s, 0.2 (s,	6H) 6H)	3.4		2.2 (d)	5.2 (t)	6.7 (d)	10	10
2b ²⁾	1.1	4.0			3.4	7.1- 7.8	2.7 (d)	4.9 (t)	6.4 (d)	9	11
2c ²⁾	1.3	4.1	0.1 (s,	12H)			1.8 (d)	4.9 (t)	6.6 (d)	10	12
3a ²⁾	1.4	4.3	0.2 (s, 0.3 (s,	6н) 6н)			2.1 (ms)	5.l (md)	6.7 (md)	ca. 2	10
3b ^{l)}	1,2	4.1				7.1- 7.8	2.8 (ms)	5.2 (md)	6.6 (md)	ca. 2	10

1) measured in $CDCl_3$. 2) measured in CCl_h .

s: singlet. d: doublet. t: triplet. ms: multiple doublet. md: multiple doublet.

2a; UV (EtOH): 240 nm (log £, 4.1); IR (KBr): 3400, 1730 cm⁻¹. 2b; UV (EtOH): 244 nm (sh. log £, 4.4), 248 (4.4), 254 (4.3), 260 (4.2), 265 (4.0), 271 (3.9); IR (oil): 3420, 1710 cm⁻¹. 2c; UV (EtOH): 240 nm (log £, 4.2); IR (oil): 1730 cm⁻¹. 3a; UV (EtOH): 238 nm (log £, 4.2); IR (oil): 1730 cm⁻¹. 3b; UV (EtOH): 244 nm (sh. log £, 4.3), 254 (4.2), 260 (4.1), 265 (4.0), 272 (3.8); IR (KBr): 1720 cm⁻¹.

The structures of 2 and 3 were deduced to be 4,5-adducts (<u>trans-4,5-disubsti-</u>tuted-4,5-dihydroazepine derivatives) from the following spectral properties.

The fact that the NMR spectra of 2 and 3 contain three peaks (H_a , H_b , and H_c) each of which corresponds to <u>two</u> ring protons suggests that 2 and 3 are symmetric compounds (4,5-adducts or 2,7-adducts), and not unsymmetric compounds (2,3adducts or 2,5-adducts). In the NMR spectra of 2 and 3 at low temperature (-30 ~ -50°C), the doublet peak of H_c split into two doublet peaks at slightly different chemical shifts, and the same phenomenon is observed with the authentic sample (4).⁵ These properties are explained by considering that the two H_c protons are influenced by the different shielding effects of the ethoxycarbonyl group whose conformation is fixed at this low temperature.⁶ This fact suggests that the two olefinic protons (H_c) are located near the nitrogen atom, and that the adducts are 4,5-adducts and not 2,7-adducts. In addition to this finding, the similarity of the NMR spectrum of 3 to that of 4 supports the substitution positions of the silyl groups as shown in the figure.

The <u>trans</u>-configuration of the silyl groups is deduced from the coupling constants in the NMR spectra. If the silyl groups of the silanols 2 are in <u>trans</u>-configuration, they should be arranged in axial positions because of their steric repulsion, and it follows that the angle between the equatrial H_a and the olefinic H_b should be about 10° judging from the Dreiding models. This is well coincident with the angle suggested by the coupling constants (J_{ab} , about 10 Hz) between these two protons.⁷ On the other hand, the J_{ab} of 3 is about 2 Hz, almost equal to that of 4. This is interpreted by considering that the arrangements of the silyl groups in 3 are equatrials because of their siloxane bond formation, and consequently that the angle between the axial H_a and olefinic H_b is about 100°, almost equal to that of 4.

The formation mechanism of the silanols 2 can be considered as follows. An electron transfer from magnesium to the azepine (1) forms the anion radical (5), which reacts with chlorosilanes to give the radical (6), and then, 6 accepts another electron from magnesium to produce the anion (7).⁸ Reaction of another chlorosilane with 7 and subsequent hydrolysis of the resulting adduct gave the silanols 2. The formation of the siloxanes 3 from 2 is not surprising because silanols are well known to be apt to form siloxanes upon heating.⁹

The addition reactions of 1-ethoxycarbonyl-lH-1,2-diazepine (8) with chlorosilanes (Xa-c) under the same conditions as above gave no adduct except almost 25 % yield of nitryl compound (9). The structure of 9 was deduced to be

-266-

all-<u>cis</u>, mainly from the good coincidence of the coupling constants in its NMR spectrum with those of the corresponding all-<u>cis</u> nitryl compounds obtained by Streith et al.,¹⁰ as well as the following spectral properties. <u>9</u>; UV (EtOH): 303 nm (log $\boldsymbol{\epsilon}$, 4.4); IR (KBr): 3330, 2210, 1710 cm⁻¹; NMR (CDCl₃) **5** ppm: 1.3 (t, 3H), 4.3 (q, 2H), 5.09 (d, H_a), 5.23 (q, H_b), 6.86 (t, H_c), 7.09 (t, H_d), 7.75 (broad, H_e). Coupling constants (Hz), J_{ad}=10, J_{bc}=9, J_{bd}=12, J_{ce}=12.

The nitryl compound $(\underline{9})$ is considered to be formed by N-N bond fission of the radical anion $(\underline{10})$, because $\underline{9}$ is also formed by the reaction of $\underline{8}$ with magnesium in HMPA, and because diazepines are known to produce the nitryl compounds like $\underline{9}$ in the reactions with strong bases.¹⁰

ACKNOWLEDGEMENT We are indebted to Prof. Hideki Sakurai, Prof. Toshio Mukai, and Prof. Takashi Toda for their kind suggestions.

REFERENCES

- 1. Department of Industrial Chemistry, Nagoya Institute of Technology.
- a) J. Dunoguès, R. Calas, and N. Duffaut, <u>J. Organometal. Chem</u>., <u>20</u>, 20 (1969).

b) J. Dunoguès, R. Calas, J. Dedier, and F. Pisciotti, <u>ibid.</u>, <u>25</u>, 51 (1970).
c) M. Bolourtchihan, R. Calas, J. Dunoguès, and N. Duffaut, <u>ibid.</u>, <u>33</u>, 303 (1971).

- 3. T. J. Barton and M. Juvet, <u>Tetrahedron Lett</u>., 2561 (1975).
- 4. Satisfactory elemental analyses and molecular ion peaks in Mass spectra were obtained for all new compounds.
- L. A. Paquette, D. E. Kuhla, J. H. Barret, and L. M. Leichter, <u>J. Org. Chem</u>., <u>34</u>, 2888 (1969).
- b) S. Iida, T. Mukai, and K. Saito, <u>Heterocycles</u>, in press.
- 7. a) E. W. Garbish, Jr., <u>J. Org. Chem.</u>, <u>27</u>, 4249 (1962).
 b) E. W. Garbish, Jr., <u>J. Amer. Chem. Soc.</u>, <u>86</u>, 5561 (1964).
- 8. a) M. Kumada, M. Ishikawa, K. Yamamoto, and K. Tamao, "Yukikeisokagobutsuno-kagaku," Kagakudojin, Tokyo (1972), p 40.
 b) T. Saegusa, Y. Ito, and M. Kumada, "Yukikinzokukagobutsu-o-mochiiru-

-267-

goseihanno," Maruzen, Vol. 2, Tokyo (1975), p 66.

9. a) D. R. Weynberg and L. H. Toporcer, <u>J. Amer. Chem. Soc.</u>, <u>84</u>, 2843 (1962).
b) M. Ishikawa and M. Kumada, <u>Synth. Inorg. Metal-org. Chem.</u>, <u>1</u>, 191 (1971).
10. J. Streith, J. P. Luttringer, and M. Nastasi, <u>J. Org. Chem.</u>, <u>36</u>, 2962 (1971).

Received, 4th November, 1978