3-A2ANORADAMANTANES

Theo Reints Bok and W.Nico Speckamp *

Laboratory of Organic Chemistry, University of Amsterdam Postbox 20241, 1000 HE Amsterdam, The Netherlands

<u>Abstract</u> - 3-Azanoradamantanes l-3 are obtained by ring closure in acid medium of C₇-substituted N-tosyl-3-azabicyclo[3.3.1]nonanes. The basicity of l-3 and the behaviour in the near UV region of 2 and 3 are discussed.

As suitable rigid models for studies on heterolytic fragmentation, intramolecular charge transfer phenomena and gas-phase basicity 1-azaadamantanes have served use-ful purposes.¹ Its versatile preparation by ring closure of C_7 -substituted 3-azabicy o[3.3.1]nonanes² has been invited to the synthesis of 3-azanoradamantane λ and derivatives.³

Compounds of special interest were 3-azanoradamantan-9-one (2), possessing the 4-piperidone ring system, and 3-azanoradamantan-6-one (3), in which a 3-pyrrolidone molecy constitutes the functionalized part of the heterocage molecule. Both compounds were expected to provide information on the effects of ring contraction in this type of strained molecule, especially with regard to its physico-chemical behaviour.

Refluxing of the $C_7 - exc}$ bicyclic alcohol $\frac{4}{2}$ in conc. HC1/HOAc (1/1) for 5 hr yielded 3-azanoradamantane ($\frac{1}{1}$) in 70% yield as a highly volatile compound, m.p. (sealed capillary) 258-260°. ¹H-NMR $\delta(C_6D_6)$: 3.55 (t, J=6 Hz, H₇); 2.78 (s, H_{2,4}); 1.83 (s, H_{1,5}); 1.50 (A₂B₂, J=15 Hz, H_{6,8}); 1.50 (s, H₉). Like 1-azaadamantane amine $\frac{1}{2}$ is also a strong base (Table I) and possesses a high nucleophilic character. Within the latter context it is of interest to note the reaction of $\frac{1}{2}$ with CHCl₃, producing the dichloromethylene complex $\frac{5}{2}$. The ¹H-NMR spectrum (CDCl₃) shows an absorption at δ =9.18 due to \underline{HCCl}_2 , ⁵ while the other absorptions are shifted to lower field.

Upon refluxing either the $C_7 - exo}$ chloride ξ^4 or the $C_7 - exo}$ alcohol 7^4 in conc. HCl/ HOAc (1/1) for 5 hr 3-azanoradamantan-9-one (2) was obtained in 75% yield; m.p. (sealed capillary) 146-148°. ¹H-NMR δ (CDCl₃): 3.90 (t, J=5.5 Hz, H₇); 3.09 (s,

-343-

 $H_{2,4}$); 2.75 (s, $H_{1,5}$); 2.06 (A_2B_2 , J = 14 Hz, $H_{6,8}$). The compound proved to be extremely hygroscopic, a behaviour which also was noted for the corresponding HCl salt. When 2 ·HCl was isolated from the acidic fraction, it was shown to exist completely in its hydrate form, m.p. >300[°] (dec), as was manifested by its analytical data, e.q. lack of C = 0 absorption and appearance of OH absorption at 3500 cm⁻¹ in IR (KBr). 1-Azaadamantan-4-one and 3-azanoradamantan-6-one (m.p. HCl salt 282-285[°]) show similar behaviour.

Precursors for the C₆-substituted heterocyclic compounds were the C₆-OH isomeric bicyclic compounds & and &b, obtained via α, α '-annelation of N-tosyl-4-piperidone enamine with acrolein.⁶ & and & enamine with acrolein.⁶ & and & enamine of the C₆-OH with pyridinium chlorochromate ation of the C₉-oxo group and oxidation of the C₆-OH with pyridinium chlorochromate into & (total yield 60%). Treatment of & with Br₂ in CH₂Cl₂ afforded quantitative-ly N-tosyl-3-aza-7 β -bromobicyclo[3.3.1]-nonan-6-one (10); ¹H-NMR & (CDCl₃) H₇: 5.45 (J = 8 and 11 Hz), indicative of an axial proton.

Refluxing of λ_{0}^{0} in conc. HCl/HOAc (1/1) yielded 3-azanoradamantan-6-one (λ_{0}^{0}) in 94% yield, m.p. (sealed capillary) 167-170°. ¹H-NMR δ (CDCl₃): 3.50 (d, J = 7 Hz, H₇); 3.12 (A₂B₂, H_{2.4}); 2.50-1.75 (6H).

The influence of the ring-contraction upon the basicity of these compounds is

measured both in water (Table I) and in the gas-phase (ICR).

TABLE I	рК _р	measured in H ₂ O at 22 ⁰	
compound	рК _р	compound ^{1a}	рК _ь
f	2.61	1-azaadamantane	2.96
2	4.31	l-azaadamantan-4-one	5.43
3	5,17		

In solution the 3-azanoradamantanes are slightly more basic, but in the gas-phase the basicity equals the basicity of the corresponding 1-azaadamantanes.

The change of hybridization of the N-electrons in the 3-azanoradamantanes as result of the ring-contraction and the effect on the basicity of the loss of one C-atom, as compared with the 1-azaadamantanes, probably equal the effect on the basicity resulting from increased strain energy effects.⁷ The difference in basicity in solution is probably a result of solvation effects.⁸

Reduction of 2 with LAH yielded the two isomeric alcohols λ_{12} and λ_{12} as a mixture in a ratio 40:60 (76% yield). Reduction of 3 with LAH yielded exclusively the C₆-<u>anti</u> alcohol λ_{2} in 94% yield. ¹H-NMR $\delta(D_{2}O)$: 4.28 (dd, J = 3 and 7 Hz, H₆); 3.45 (t, J = 7, H₇); 2.95 (A₂B₂, H_{2,4}); 2.43 and 1.50 (AB, H₈); 2.20 (s, H₅); 1.95 (s, H₁); 1.95 (H₉). The coupling of 7 Hz between H₆ and H₇ is indicative of an equatorial H₆.⁹ The reduction selectivity can be explained by a diminution of the steric hindrance for the reagent at the <u>syn</u>-side of the molecule, resulting in an <u>anti</u>substituted alcohol.

The C_6 -anti configuration of 12 is supported by an independent synthesis via Ntosyl-3-azabicyclo[3.3.1]non-6-ene (13).⁴ Epoxidation with m-chloroperbenzoic acid gave 14 with the epoxy ring exo substituted¹⁰ in 96% yield. Refluxing of 14 in conc. HCl/HOAc (1/1) for 5 hr afforded 12 in 85% yield; no other isomers were isolated. 1-Azaadamantan-4-one and derivatives possess the ideal rigid cage for intramolecular charge transfer between the free electron pair of the N-atom and the carbonyl- or C = C electrons.¹ To investigate the latter phenomenon in the nor series the UV absorption data for the 3-azanoradamantanes and the C₉-substituted carbocyclic analogs are compiled in TABLE II. The n- π^* transition of the carbocyclic compound 15g is at 290 nm and the n- π^* transitions of 15b, 15c and 15d at 239 nm, 224 nm and 240 nm respectively.

The UV spectra of the 3-azanoradamantanes show two absorptions: the absorption for the normal transition of the C = X chromophore and an extra absorption for the

—345—

sigma-coupled transition. As compared to the C_9 -substituted 3-azanoradamantanes the C_6 -substituted compounds show a markedly diminished absorption for the sigma-coupled transition, indicating a smaller charge transfer interaction. Presumably the deviation from the ideal geometry in the C_6 -substituted 3-azanoradamantanes causes a decrease of the magnitude of the sigma-coupling between the lone pair of the N-atom and the π -system of the C = X in the transition state. Therefore a gradual diminishing of the intramolecular charge transfer effect in dependence of the orbital geometries involved seems indicated. In reverse these results show nicely the ability of 3-azanoradamantanes to serve as models for a further study of intramolecular charge transfer phenomena in heterocage-like compounds.

TABLE II

	UV	absorption data	as measured in	n-hexane at	20 ⁰
Nr	x	λ ⁽¹⁾ max (nm)	λ ⁽²⁾ max (nm)	ε <mark>(1)</mark> max	e (2) e max
f	-	<200	-	-	-
łźą	0	-	290	-	17
z	0	229	290 sh	1400	30
£	0	230	300	137	23
12F	C(CN) ₂	239	-	16500	-
₹ķ	C(CN) ₂	227	285	10200	6300
ĘĘ	C(CN) ₂	237	290	10200	240
ર્રફ	CHCOOEt	224	-	20200	-
રૃષ્ટ	CHCOOEt	208	260	10900	5100
ş£	CHCOOEt	216	sh ^{a)}	13700	-
łźą	C(CN)COOEt	240	-	17500	-
રવ	C(CN)COOEt	224	298	8900	6000

<u>15,a,b,c,d</u>

3,3b,3c

a) The sigma-coupled transition is present as a shoulder.

—346—

HETEROCYCLES. Vol 12, No 3, 1979

REFERENCES

1a. A.W.J.D. Dekkers, J.W. Verhoeven and W.N. Speckamp, Tetrahedron, 1973, 29, 1691, b. C. Worrell, J.W. Verhoeven and W.N. Speckamp, Ibid., 1974, 30, 3525. c. C.B. Theissling and N.M.M. Nibbering, Advan.Mass Spectrom., 1974, 6, 725. 2. W.N. Speckamp, J. Dijkink and H.O. Huisman, J.Chem.Soc., Chemical Commun., 1970, 197. 3. All compounds gave satisfactory elemental and spectroscopic analyses. 4. Th. Reints Bok and W.N. Speckamp, to be published. 5. J.P. Lorand, Tetrahedron Lett., 1971, 2511. 6. Th. Reints Bok and W.N. Speckamp, Tetrahedron, 1977, 33, 787. 7. D.H. Aue, H.M. Webb and M.T. Bowers, <u>J.Amer.Chem.Soc</u>., 1975, <u>97</u>, 4136 and 4137. 8. D.H. Aue, H.M. Webb and M.T. Bowers, Ibid., 1976, 28, 311 and 318. 9. A. Nickon, G.D. Pandit and R.O. Williams, Tetrahedron Lett., 1967, 2851. 10. E.N. Marvell, J. Seubert, D. Sturmer and W. Federici, J.Org.Chem., 1970. 35, 396.

Received, 14th November, 1978