QUINAZOLINOCARBOLINE ALKALOIDS CHEMISTRY: REACTIVITY OF EUXYLOPHORINES - Part I Bruno Danieli, Giordano Lesma, and Giovanni Palmisano Istituto di Chimica Organica - Università degli Studi di Milano Via Saldini 50 - 20133 Milano - Italy - Centro CNR di Studio per le Sostanze Organiche Naturali. <u>Abstract</u> - The quinazolinocarboline alkaloids of type ($\underline{1a}$) and ($\underline{1b}$) showed a marked regioselectivity towards nucleophilic reagents, ($\underline{1a}$) reacting at C_{13b} -N₁₄ bond while ($\underline{1b}$) cleaving the C_5 -N₆ bond. The catalytic hydrogenation was also reported. The structure determination and synthesis of several new quinazolinocarboline alkaloids, belonging to structural types designed ($\underbrace{1a-d}_{\underline{a}}$), ($\underbrace{2a-f}_{\underline{a}}$) and ($\underbrace{3}$), were reported in previous papers on the Amazonian Rutacea <u>Euxylophora paraensis</u> Hub. (pao amarello, pao setin). We now wish to describe some interesting chemical behaviour of alkaloids of type (1), mainly ($\underline{1}\underline{a}$) and ($\underline{1}\underline{b}$), being unexceptional the reactivity of alkaloids of type ($\underline{2}$). The spectral data disclosed for euxylophorine A ($\underline{1}\underline{a}$) the existence of a mixture of the orange-red anhydronium base and the yellow "open-chain" form ($\underline{1}\underline{a}_3$) in dynamic equilibrium in solution. The yellow ($\underline{1}\underline{a}_3$), obtained by crystallisation from wet benzene, reverted to the red ($\underline{1}\underline{a}$) when heated in a suitable anhydrous solvent ($\underline{e}.\underline{g}.$, benzene) or in crystalline state, having the same m.p. as ($\underline{1}\underline{a}$). ($\underline{1}\underline{a}_3$) exhibited $\underline{v}_{\text{max}}$ (nujol) 3390,3230,1673,1650 cm⁻¹ and $\underline{1}_{\text{H-NMR}}$ (py-d₅+D₂0) $\underline{6}2.95(3H,s,N-\underline{Me})$,3.35 and 4.35(each 2H,t, $\underline{3}\underline{1}$ 6.5Hz,C₄- \underline{H}_2 and C₃- \underline{H}_2),3.71 and 4.00(each 3H,s,OMe),6.42(1H,s,C₃, \underline{H}) 7.30-8.20(4H,m,aromatic protons),7.56(1H,s,C₆,- \underline{H}). The mass spectrum (EI,70eV,140°) showed no parent ion at $\underline{m}/\underline{e}$ 379, but peaks at $\underline{m}/\underline{e}$ 361(C₂₁H₁₉N₃O₃,100%),359(59),346 (C₂₀H₁₆N₃O₃,36),180.5(C₂₁H₁₉N₃O₃²⁺,11),168(C₁₁H₈N₂,22) characteristic of the anhydronium base ($\underline{1}\underline{a}$) were observed. A solution of ($\underline{1}\underline{a}$) in aprotic solvents (CHCl $_3$, MeCN) gave relatively simple UV spectra with two maxima at 257 and 410 nm in CHCl $_3$ and at 253 and 402 nm in MeCN. Proof of structure ($\underline{1}\underline{a}$) came from IR spectrum (v_{CO} at 1670 cm $^{-1}$, no evidence for NH group) and 1 H-NMR spectrum (py-d $_5$)(a strongly deshielded singlet at δ 5.23 for N-Me). On dilution of the MeCN solution with H $_2$ O, the UV spectrum was altered with a new maximum at 382 nm due to the form ($\underline{1}\underline{a}_1$), as deduced from the similarity with that of the hydrochloride (λ_{max} 389 nm) and tartrate (λ_{max} 383 nm) of ($\underline{1}\underline{a}_3$). Furthermore, immediately after dissolution of the "open-chain" form ($\underline{1}\underline{a}_3$) in anhydrous MeCN, a maximum at 309 nm was present. Later on the partial disappearance of this peak, a concerted increasing of the maximum at 402 nm, due to $(\underline{1a})$ (isosbestic point at 338 nm), was observed. After 9 hr (25°) a 7:3 mixture of $(\underline{1a})$ and $(\underline{1a}_3)$ was present and this distribution was similar to that observed when $(\underline{1a}_3)$ was allowed to stand in CHCl₃ (12 hr, r.t.) (isosbestic point at 343 nm). The transformation of $(\underline{1}\underline{a})$ into $(\underline{1}\underline{a}_3)$ could be represented as a four-fold equilibrium taking place through the quaternary ammonium salt $(\underline{1}\underline{a}_1)$, neutral covalent hydrate(carbinolamine, pseudobase) $(\underline{1}\underline{a}_2)$ and fission of the ring D. A different behaviour was observed in polar protic (hydrogen-bonding) solvents ($\underline{e}.\underline{g}.$, EtOH). Both ($\underline{1a}$) and ($\underline{1a}_3$) gave the same spectrum with maxima at 329 and 390 nm, pointing out that the abovementioned equilibrium was displaced towards the anhydronium base and/or ammonium salt form while increasing the polarity of the solvent. There was no evidence for the intermediacy of carbinolamine ($\underline{1a}_2$) or its equivalent form. 4.5 The UV properties of euxylophorine B (1b) were quite different from those of (1a), the solution in MeCN (λ_{max} 278 and 352 nm) and CHCl₃(λ_{max} 263 and 360 nm) showing no change with time. Only a marked colour change was observed when the yellow-orange solution of (1b) in MeOH was allowed to stand at r.t. This solution faded to colourless and a single compound (5a) was isolated in quantitative yield, m.p. 269-71°(dec) λ_{max} (MeCN) 228,246,292 and 353 nm(1g ϵ 4.51,4.58,4.05 and 3.95); ν_{max} (nujol) 3490, 1712,1610 cm⁻¹; 1 H-NMR(py-d₅) & 3.46(3H,s,NMe),3.53(3H,s,CO₂Me),3.70 and 3.80(each 3H,s,OMe),6.93(1H,s,C₆,-H),7.39(1H,s,C₃,-H),7.73 and 8.40(2H,AB pattern, 3 I 5.0,C₃-H and C₄-H),10.25(1H,br s,NH). 1 H-NMR(CF₃CO₂H+20%CDCl₃, soon after dissolution) & 3.85 (3H,s,NMe),3.90(3H,s,CO₂Me),4.10 and 4.18(each 3H,s,OMe),7.30-7.80(8H,m,aromatic protons);EI-MS(140°)m/e 391(M⁺,26%),362(7),359(M⁺-MeOH,13),344(10),332(M⁺-CO₂Me,100),329.6(m⁻ for 391 \rightarrow 359). (5a) was slowly converted in TFA-CDCl₃ solution (NMR tube, ``` t_{1/2} \sim 13 days,r.t.) to the trifluoroacetate of (1b). Thermolysis of (5a) at 280° (0.1 mm Hg, 30 min) gave the benzodiazepine (6) in 35% yield, m.p. 204-6°(1-Pr₂0/CHCl₃); \lambda_{max} (MeOH) 249 and 347 nm(lg \epsilon 4.63 and 3.82); \nu_{max} (nujol) 1668,1615,1610 cm⁻¹; \frac{\lambda_{max}}{100} H-NMR(DMSO-d₆) \delta 3.46(3H,s,N<u>Me</u>),3.81 and 3.92 (each 3H,s,OMe),6.82(1H,s,C₄-H),7.41(1H,s,C₁-H),7.76 and 8.26(2H,AB pattern,^3\underline{J} 5.5, C_{8}-\underline{H} and C_{7}-\underline{H}), 8.71(1H, dd, \frac{3}{\underline{J}} 7.5, \frac{4}{\underline{J}} 1.5, C_{12}-\underline{H}); EI-MS(165°) m/e 359(M+*, 100%), 343(26) 327(26),312(22),168(30). The benzodiazepine (\frac{6}{2}) was also obtained by refluxing (\frac{1}{2}) in dioxane containing 5% NEt_3 (15 hr) in 68% yield.^6 (\underline{1}\underline{b}) dissolved in N NaOH undergoing a facile cleavage to give the colourless carboxy- late (\underline{5b})^7 and this was reverted to yellow (\underline{1b}) by acid treatment. The behaviour of (1a) and (1b) towards reducing reagents was also very different. With NaBH₄ in MeOH (30 min,r.t.) (1a) gave in quantitative yield the colourless di- hydroderivative (\underline{4}\underline{a}), m.p. 248°(\underline{n}-hexane/CHCl_3); \lambda_{max} (MeOH) 268 and 290 nm(1g \epsilon 4.11 and 3.90); v_{\text{max}} (CHCl₃) 3480,1640 cm⁻¹; EI-MS(185°) m/e 363(M⁺,100%),362(42),194(55), 193(36),178(69),169(18). Euxylophorine A (1a) was smoothly reduced by LiAlH₄ in re- fluxing THF (2 hr) to the desoxo derivative (4b) in 75% yield, m.p. 204° (benzene); \lambda_{\text{max}} (MeOH) 272(sh),282 and 290 nm (1g \epsilon 3.94 and 3.92); ¹H-NMR(py-d₅+D₂0) \delta 2.78 (3H, s, NMe), 3.04(4H, m, C_7 - H_2 + C_8 - H_2), 3.82 and 3.84(each 3H, s, OMe), 3.77 and 3.92(2H, Me) AB pattern, ^{2}\underline{J} 10.0, _{5}^{-}\underline{H}_{A}\underline{H}_{B}^{-}), 4.94(1H, s, _{13b}^{-}\underline{H}), 6.72(1H, s, _{1}^{-}\underline{H}), 6.80(1H, s, _{4}^{-}\underline{H}). The same product resulted when (\frac{4a}{2}) was reduced with LiAlH₄ (Et₂0,r.t.) under N₂. Attem- pted reduction of (1b) with excess NaBH₄ in MeOH at r.t. for 24 hr was unsuccessful; however, when \begin{pmatrix} 1b \\ \pm 1 \end{pmatrix} was heated with LiAlH₄ in THF (2 hr) or with NaBH₄ in MeOH (9 hr) the C_5-N_6 bond was cleaved to give the alcohol (\frac{5}{2}) in 50-75% yield,M.p.130°(CHCl₃); \lambda_{\text{max}} (MeOH)244,294 and 345 nm(1g \epsilon 4.42,3.94 and 3.77); \nu_{\text{max}} (nujo1) 33\pm0,3310,1610,1595 cm ; 1 н-NMR (DMSO-d₆) & 3.38(3H,s,N<u>Me</u>),3.58 and 3.84(each 3H,s,O<u>Me</u>),4.45(2H,s,С<u>Н</u>2ОН) 5.44(1H, br s, OH), 6.66(1H, s, C₃, -H), 7.21(1H, s, C₆, -H), 9.35(1H, br s, NH); EI-MS(170°) m/e 363(M^{+*}, 100\%), 332(M^{+*}-CH_30, 23), 331(100), 169(23). Acetylation of (5c) gave the mono- acetate (\underline{5}\underline{d}), m.p. 126° (\underline{n}-hexane/CHCl₃); v_{max} (nujol) 3350, 1730, 1630, 1610 cm⁻¹; EI-MS (180°) \underline{m}/\underline{e} 405(M^{+}, 24%), 362(M^{+}-C_{2}H_{3}0, 11), 333(44), 332(M^{+}-C_{3}H_{5}O_{2}, 100). Hydrogenation of (1a) as well as (1b) with PtO₂ in AcOH containing 1% HClO₄ resulted in the exclusive formation of (\frac{7}{2})(80-85\%) isolated yield) rather than the expected de- rivative (4a). 9,10 (7): m.p. 195-7°(MeOH); \lambda_{1,2} max (MeCN) 239,252 and 376 nm(lg \epsilon 4.00, 3.94 and 4.44); v_{\text{max}}(\text{nujol}) 1698,1610 cm⁻¹; H-NMR(TFA+20% cDCl₃) \delta 1.70-2.90(8H,m, ring A protons),3.03 and 4.62(each 2H,t,^3\underline{J} 7.0,c_8-\underline{H}_2 and c_7-\underline{H}_2),4.13(3H,s,N\underline{Me}),4.20 and 4.35(each 3H,s,0<u>Me),7.27(1H,s,C₁-H),7.84(1H,s,C₄-H);EI-MS(180°)</u> \underline{m/e} 365(M^{+*},100%), 364(21),337(M^{+},-C_2H_4,33),182.5(M^{2+},4). The assignment of structure (\underline{7}) was confirmed by its reduction with NaBH, in MeOH(30 min,r.t.) to give quantitatively (8),m.p. 195° (dec)(i-Pr_20/penzene);v_{max}(nujol) 3310,1635,1610 cm⁻¹;\lambda_{max}(MeOH) 233,315 and 373 nm (lg \epsilon 4.37,3.57,3.62); EI-MS (190°) \underline{m/e} 367(M⁺*,100%),366(87),194(91),193(20),178(65), 174(30),173(61). ``` The regioselectivity observed in the above reactions depends upon the presence of C_7 - C_8 double bond. We are investigating currently the thermal behaviour of several quinazolinocarboline bases of type (1) with different substituents at N_{14} and will report on these in a future paper. $$(\underline{1}\underline{b})$$ R₁:OMe;R₂:H; Δ ⁷ $$(1c)$$ R₁, R₂: OMe $$(\underline{1}\underline{d})$$ $R_1, R_2: OMe; \Delta^7$ $$(\underline{7})$$ 9,10,11,12-tetrahydro $(\underline{1a})$ $$(2b)$$ R₁,R₄:H;R₂,R₃:OMe $$(\underline{2}\underline{c})$$ R_1 , R_4 : H; R_2 , R_3 : OMe; Δ^7 $$(2d)$$ $R_1:H; R_2, R_3, R_4:OMe$ $$(\underline{2e})$$ $R_1: H; R_2, R_3, R_4: OMe; $\Delta^7$$ $$(\underline{2f})$$ R₁, R₄: H; R₂: OH; R₃: OMe $$(\underline{3})$$ OMe $$(\underline{4}\underline{b})$$ $R_1: OMe; R_2, R_3: H; X: H_2$ $$(\underline{4c}) R_1, R_2, R_3: H; X: 0$$ $$(44)$$ R₁,R₃:H;R₂:OMe;X:0 $$(\underline{4e})$$ R₁:H;R₂:OMe;R₃:OEt;X:O $$(8)$$ 9,10,11,12-tetrahydro $(4a)$ (5a) R:CO,Me ## REFERENCES AND NOTES - L.Canonica, B.Danieli, P.Manitto, G.Russo, and G.Ferrari, <u>Tetrahedron Lett.</u>, 1968, 4865, B.Danieli, P.Manitto, F.Ronchetti, G.Russo, and G.Ferrari, <u>Experientia</u>, 1972, <u>28</u>, 249; B.Danieli, P.Manitto, F.Ronchetti, G.Russo, and G.Ferrari, <u>Phytochemistry</u>, 1972, <u>11</u>, 1833; B.Danieli, G.Palmisano, G.Russo, and G.Ferrari, <u>ioid</u>., 1973, <u>12</u>, 2521; B.Danieli, G.Palmisano, G.Rainoldi, and G.Russo, <u>ibid</u>., 1974, <u>13</u>, 1603; B.Danieli, C.Farachi, and G.Palmisano, <u>ibid</u>., 1976, <u>15</u>, 1095. - 2. For a review on the chemistry of carbolines, see R.A.Abramovitch and I.D. Spenser, "Advances in Heterocyclic Chemistry" ed. by A.R.Kat.itzky, Academic Press, New York and London, 1964, vol. 3, p.79. - 3. For a general discussion on pseudobases, see D.Beke, ibid., 1963, vol.1, p. 167. - 4. The transient existence of a 13b-ethoxydihydrohortiamine (4e) has been posturated by Pachter et al.(J.Amer.Chem.Soc., 1960, 82, 5187). - 5. For an example of a stable carbinolamine in related heterocycles, see M.Ro-the, T.Toth, and D.Jacob, Angew. Chem., 1971, 113. - 6. Recently Shamma reported that the N₇-C₈ bond of protoberberine derivatives (9) was susceptible to cleavage with alkali only in the presence of 5-6 double bond(M.Shamma and L.A.Smeltz, Tetrahedron Lett., 1976, 1415). - 7. The cleavage of (1b) with 1 equiv NaOH in HMPT and Excess MeI at r.T. gave (5a) in almost quantitative yield(Cf.J.E.Shaw and D.C.Kunerth, J.Org.Chem., 1974,39,1968. - 8. A comparable behaviour for 11<u>H</u>-pyrido 2,1-<u>b</u> quinazolin-11-one has been encountered by S.Carboni, <u>Atti Soc. Toscana Sci. Nat.,1955,62,261 (C.A.,1956,50,16767b).</u> - 9. Under the same conditions dehydroevodiamine ($\underline{1}$; R_1 , R_2 : H) and hortiamine ($\underline{1}$; R_1 : H, R_2 : OMe) gave the respective dihydroderivatives ($\underline{4}\underline{c}$) and ($\underline{4}\underline{d}$); I.J.Pachter and G.Suld, \underline{J} . Org. Chem., 1960, $\underline{2}\underline{5}$, 1680 and Ref.4. - 10. Hydrogenation of anhydronium bases with a similar course has been reported (see Ref. 2,pp.102-3). Received, 16th November, 1978