HETEROCYCLES, Vol 12, No 3, 1979

STUDIES OF PYRAZINES. N. PYROLYSIS OF 2-ALKOXYPYRAZINES

Takeo Konakahara*, Kazuhiko Kuwata and Yukio Takagi Department of Applied Chemistry, Science University of Tokyo, Kaqurazaka, Shinjuku-ku, Tokyo 162, Japan

Abstract — A pyrolysis of 2-alkoxypyrazine (1) has been performed to give 2-pyrazinol (2) and alkene (3) and to obey firstorder kinetics. The reaction proceeds through a 6-membered cyclic transition state analogous to that of ester pyrolysis. The activation parameters, $\log(A/s^{-1})$ and $E_a/(kcal mol^{-1})$, and the relative rate constants were determined in the pyrolysis of eight 2-alkoxypyrazines $\frac{1}{2}$ (R = C₂H₅, <u>n</u>-C₃H₇, <u>i</u>-C₃H₇, <u>i</u>-c₄H₉, <u>s</u>-C₄H₉, $t-C_4H_9$, $t-C_5H_{11}$, and 1,2-dimethylpropyl). Substitution effects on the reaction rate at the α - and β -position in the alkoxy1 group were discussed on the basis of the kinetic data.

Previously, the pyrolysis of isopropoxypyrazine was reported to give 2-pyrazinol and propene.¹ This was the first reaction which was a nitrogen analogue of ester pyrolysis, and an analogous reaction has also benn observed in the mass spectra of 2-alkoxypyrazines.² In the progress of the kinetic study on the reaction by us,³ Taylor has independently reported a kinetics in an analogous type of reaction of 2-ethoxypyrazine.⁴ In his report, he proposed that the reaction proceeded through a scmi-conserted 6-centered cyclic transition state. However, the detailed nature of the transition state has not been described.

In this communication, we wish to report our findings on the pyrolysis of the 2-alkoxypyrazines (1). As mentioned above, 1 was decomposed to 2-pyrazinol $\binom{2}{2}$

$$\begin{array}{c} A \\ H \\ R^{4}R^{3} \\ R^{2} \\ 1 \\ R^{4}R^{3} \\ R^{2} \\ 1 \\ R^{2}CHR^{3}R^{4} \\ R^{4} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{2}CHR^{3}R^{4} \\ R^{4} \\ R^{2} \\ R$$

ŝ

and alkene (3) at 360 \sim 585 °C (Eq. 1). The reaction was performed in a silvertublar reactor coupled with a gas chromatograph aparatus in series. The decrease of 1 obeyed good first-order kinetics. The activation parameters (ln A and F_{a}) in the pyrolysis of eight 2-alkoxypyrazines ($la \sim lb$) were determined and shown in Table. The values change drastically with substituents at the α - or β -position in the alkoxyl group. 2-Octyloxypyrazine (1;) did not yield isomers except for 1octene, and 2-neopentyloxypyrazine $(\underline{l},\underline{j})$ resisted stubbornly to the pyrolysis.⁵ These facts imply that the reaction (1) proceeds through the 6-membered cyclic transition state analogous to that of ester pyrolysis. The activation energy in the pyrolysis of l_{A} is 63.8 kcal mol⁻¹ and larger than that of 2-ethoxypyridine reported by Taylor (46.8 kcal mol⁻¹).⁴ The rate of the former is about 2.3 times slower than that of the later. The deactivation effect results from the decrease in the electron density on the pyrazine-ring nitrogene, which shows lower pka values than that of pyridine ring.⁶ This is the first observation on the electronic effect at the trigger atom which abstructs β -hydrogen in the unimolecular thermal elimination of alkene analogous to ester pyrolysis.

If the compound l_{a} is selected as a logical standard, the relative rate constants, k_{rel} , are calculated as shown in Table 1. The reactivity order in each compounds studied is <u>tertiary</u> > <u>secondary</u> > <u>primary</u>. This is the same order as Taylor has previously reported in a pyrolysis of acetates.⁸ The k_{rel} values for isopropoxy- and <u>t</u>-butoxypyrazine, (lc) and (lf), are 18.8 and 758, respectively.

Compd.	log(A/s ⁻¹)	$E_a/(kcal mol^{-1})$	Temp. range t/°C	a) ^k rel
la	16.55	63.8	550 ~ 585	1.00
	14.60	56.3	533 ∿ 571	1.3
łę	13.22	47.1	465 ∿ 525	18.8
1d ^{b)}	27.79	106.4	527 ∿ 553	0.32
\mathbf{e}^{b}	12.91	45.3	468 ∿ 495	22.3
łŧ	12.65	39.2	357 ∿ 387	758
få _{p)}	13.70	41.6	357 ∿ 389	1850
1.h ^{b)}	14.07	49.8	459 ~ 487	24.3

Table. Activation Parameters and Relative Rate Constants in Pyrolysis of 2-Alkoxypyrazines ($la \sim lb$)

a) At 520 °C. b) Relative rate method.

-366-

In comparison with relative rate constant in a pyrolysis of the corresponding acetate at the same temperature,⁸ a plot of $\log(k_{rel})_{acetate} \underline{vs}$. $\log(k_{rel})_{2-alkoxy-pyrazine}$ gives a straight line (Figure). The fact suggests that the transition state in the pyrolysis of l is similar to that of acetate.

Figure. Correlation of relative
rates of 2-alkoxypyrazine 1 and
ester pyrolysis at 520 °C.

The effects on the rate by methyl branching at the α -position in the pyrolysis of $\frac{1}{2}$ at 520 °C were clarified by a comparison of k_{rel} for $\frac{1}{2}c$ with that for $\frac{1}{2}c$; or that for $\frac{1}{2}c$ with that for $\frac{1}{2}c$. The accelerating effects in $\frac{1}{2}c$ and $\frac{1}{2}c$ are 18.8 and 40.3; and those in $\frac{1}{2}c$ and $\frac{1}{2}c$ are 17.1 and 83.0, respectively. These results imply that the electronic effect is important in the pyrolysis of the α -substituted $\frac{1}{2}$ and that the α -carbon in $\frac{1}{2}$ posesses the same carbonium ion character in the transition state of the pyrolysis as proposed in a pyrolysis of esters.⁹

On the other hand, the effects at the β -position is very different from those at the α -position. The reaction rates were accelerated by the factors of 1.2 \sim 2.4 when the β -position in each of the <u>primary</u>, <u>secondary</u> and <u>tertiary</u> alkoxyl groups was substituted with one methyl group. Although an pronounced accelerating effect was not observed in the pyrolysis of l_{h} (1.1 times relative to l_{e}), the reaction of isobutoxypyrazine (l_{d}) was suppressed (0.25 times relative to l_{b}). These deaccelerating effects in the pyrolysis of l_{d} and l_{h} result from a steric hindrance between the 2-pyrazinyl group and the bulky isopropyl one attached to

-367-

the α -carbon.¹⁰

The tublar reactor used in this work was made in our laboratory and coupled with a Shimadzu GC-4CPF gas chromatograph apparatus in series. In a typical procedure, a mixture of $\frac{1}{2}$ and an appropriate internal standard (quinoline, o-xylene or mesitylene) was injected with a micro injector into the reactor. The 2-alkoxy-pyrazines $\frac{1}{2}$ were prepared by the method reported previously.¹

References

- 1. T. Konakahara and Y. Takagi, Bull. Chem. Soc. Jpn., 1977, 50, 2734.
- T. Konakahara, K. Kuwata and Y. Takagi, Abstr. No. 2-3, 12th Symposium of Organic Mass Spectrometry, Tokyo, November 1977.
- 3. T. Konakahara, Y. Takagi and T. Kuwana, Abstr. No. 3K07, 35th National Meeting of the Chemical Society of Japan, Sapporo, August 1976; T. Konakahara and Y. Takagi, Abstr. No. 2R14, 36th National Meeting of the Chemical Society of Japan, Osaka, April 1977; T. Konakahara, K. Kuwata and Y. Takagi, Abstr. No. 1127, 38th National Meeting of the Chemical Society of Japan, Nagoya, October 1978.
- 4. R. Taylor, J. Chem. Soc. Chem. Comm., 1978, 732.
- 5. When lj was heated at 555.6 °C for 3.68 s, most of lj was recovered (>98%).
- 6. The pK_a values of pyrazine itself are 0.65 and -5.8, and that of pyridine is $5.17.^{7}$
- W. H. Cheeseman and E. S. G. Werstiuk, "Advances in Heterocyclic Chemistry," Vol. 14, ed. A. R. Katritzky and A. J. Boulton, Academic Press, New York (1972), p.99.
- 8. R. Taylor, J. Chem. Soc. Perkin Trans. 2, 1975, 1025.
- 9. R. Taylor, G. G. Smith and W. H. Wetzel, J. Am. Chem. Soc., 1962, 84, 4817.
- Most of the hydrogen abstruction in the reaction of lh may occur at the 1methyl group in the 1,2-dimethylpropyl one.

Received, 30th November, 1978