HETEROCYCLES. Vol 12, No 3. 7979

STUDIES OF PYRAZINES. N. PYROLYSIS OF 2-ALKOXYPYRAZINES

Takeo Konakahara*, Kazuhiko Kuwata and Yukio Takagi Department of Applied Chemistry, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Abstract $-$ A pyrolysis of 2-alkoxypyrazine (1) has been performed to give 2-pyrazinol *(5)* and alkene *(2)* and to obey firstorder kinetics. The reaction proceeds through a 6-membered cyclic transition state analogous to that of ester pyrolysis. The activation parameters, $\log(A/s^{-1})$ and $E_a/(\text{kcal mol}^{-1})$, and the relative rate constants were determined in the pyrolysis OF eight 2-alkoxypyrazines \downarrow (R = C₂H₅, <u>n</u>-C₃H₇, i-C₃H₇, i-C₄H₉, s-C₄H₉, $\frac{t}{k}$ -C₄H₉, $\frac{t}{k}$ -C₅H₁₁, and 1,2-dimethylpropyl). Substitution effects on the reaction rate at the α - and β -position in the alkoxyl group were discussed on the basis of the kinetic data.

Previously, the pyrolysis of isopropoxypyrazine was reported to give 2-pyrazinol and propene.¹ This was the first reaction which was a nitrogen analogue of ester pyrolysis, and an analogous reaction has also benn observed in the mass spectra of 2-alkoxypyrazines.² In the progress of the kinetic study on the reaction by us,³ Taylor has independently reported a kinetics in an analogous type of reaction of 2-ethoxypyrazine.⁴ In his report, he proposed that the reaction proceeded through a scmi-conserted 6-centered cyclic transition state. However, the detailed nature of the transition state has not been described.

In this communication, we wish to report our findings on the pyrolysis of the 2-alkoxypyrazines (1). As mentioned above, 1 was decomposed to 2-pyrazinol (2)

$$
\begin{array}{ccc}\n\begin{array}{ccc}\n\mathbf{A} & \mathbf{B} & \mathbf{B} \\
\mathbf{B} & \mathbf{B} & \mathbf{C} \\
\mathbf{B} & \mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{A} & \mathbf{B} \\
\mathbf{D} & \mathbf{A} & \mathbf{B} \\
\mathbf{A} & \mathbf{B} & \mathbf{B} \\
\mathbf{A} & \mathbf{B} & \mathbf{B}\n\end{array}\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\mathbf{A} & \mathbf{B} & \mathbf{B} \\
\mathbf{B} & \mathbf{B} & \mathbf{C} \\
\mathbf{A} & \mathbf{B} & \mathbf{C} \\
\mathbf
$$

Ŕ

and alkene (3) at 360 \sim 585 °C $(Eq. 1)$. The reaction was performed in a silvertublar reactor coupled with a gas chromatograph aparatus in series. The decrease of \downarrow obeyed good first-order kinetics. The activation parameters (ln A and E_A) in the pyrolysis of eight 2-alkoxypyrazines (\downarrow a \sim \downarrow h) were determined and shown in Table. The values change drastically with substituents at the α - or β -position in the alkoxyl group. 2-Octyloxypyrazine (1i) did not yield isomers except for 1octene, and 2-neopentyloxypyrazine **(&a)** resisted stubbornly to the pyrolysis. 5 These facts imply that the reaction (1) proceeds through the 6-membered cyclic transition state analogous to that of ester pyrolysis. The activation energy in the pyrolysis of λ is 63.8 kcal mol⁻¹ and larger than that of 2-ethoxypyridine reported by Taylor (46.8 kcal mol⁻¹).⁴ The rate of the former is about 2.3 times slower than that of the later. The deactivation effect results from the decrease in the electron density on the pyrazine-ring nitrogene, which shows lower pk, values than that of pyridine ring.⁶ This is the first observation on the electronic effect at the trigger atom which abstructs β -hydrogen in the unimolecular thermal elimination of alkene analogous to ester pyrolysis.

If the compound la is selected as a logical standard, the relative rate constants, *krel,* are calculated as shown in Table 1. The reactivity order in each compounds studied is tertiary > secondary > primary. This is the same order as Taylor has previously reported in a pyrolysis of acetates.⁸ The *k_{rel}* values for isopropoxy- and t-butoxypyrazine, $(\downarrow \phi)$ and $(\downarrow \phi)$, are 18.8 and 758, respectively.

Compd.	$log(A/s^{-1})$	$E_A / (kcal \text{ mol}^{-1})$	Temp. range t / $^{\circ}$ C	$k_{rel}^{}$
문	16.55	63.8	$550 \sim 585$	1.00
$\lambda^{(b)}$	14.60	56.3	$533 \sim 571$	1.3
$\frac{1}{2}$	13.22	47.1	$465 \sim 525$	18.8
λ_0^{a}	27.79	106.4	$527 \sim 553$	0.32
$\lambda_0^{e^{D}}$	12.91	45.3	$468 \sim 495$	22.3
Jf	12.65	39.2	$357 \sim 387$	758
fg _p	13.70	41.6	$357 \sim 389$	1850
$\frac{1}{2}h^{b}$	14.07	49.8	$459 \sim 487$	24.3

Table. Activation Parameters and Relative Rate Constants in Pyrolysis of 2-Alkoxypyrazines (λ \approx λ)

a) At 520 °C. b) Relative rate method.

-366-

In comparison with relative rate constant in a pyrolysis of the corresponding acetate at the same temperature, 8 a plot of $\log(k_{rel})_{acetate}$ **vs.** $\log(k_{rel})_{2-alkoxy-}$ **pyraaine** gives a straight line (Figure). The fact suggests that the transition state in the pyrolysis of l is similar to that of acetate.

Figure. Correlation of relative rates of 2-alkoxypyrazine $\frac{1}{k}$ and ester pyrolysis at 520 °C.

The effects on the rate by methyl branching at the α -position in the pyrolysis of \downarrow at 520 °C were clarified by a comparison of k_{rel} for \downarrow g with that for \downarrow g; or that for $\frac{1}{k}$ with that for $\frac{1}{k}$. The accelerating effects in $\frac{1}{k}$ and $\frac{1}{k}$ are 18.8 and 40.3; and those in kg and kg are 17.1 and 83.0, respectively. These results imply that the electronic effect is important in the pyrolysis of the α -substituted $\frac{1}{k}$ and that the α -carbon in $\frac{1}{k}$ posesses the same carbonium ion character in the transition state of the pyrolysis as proposed in a pyrolysis of esters. **⁹**

On the other hand, the effects at the β -position is very different from those at the α -position. The reaction rates were accelerated by the factors of 1.2 α 2.4 when the β -position in each of the $primary$, secondary and tertiary alkoxyl groups was substituted with one methyl group. Although an pronounced accelerating effect was not observed in the pyrolysis of $\lambda_{\mathcal{R}}$ (1.1 times relative to $\lambda_{\mathcal{R}}$), the reaction of isobutoxypyrazine ($\downarrow d$) was suppressed (0.25 times relative to $\downarrow d$). These deaccelerating effects in the pyrolysis of $\lambda_{\mathcal{R}}$ and $\lambda_{\mathcal{R}}$ result from a steric hindrance between the 2-pyrazinyl group and the bulky isopropyl one attached to

 $-367-$

the α -carbon.¹⁰

The tublar reactor used in this work was made in our laboratory and coupled with a Shimadzu GC-4CPF gas chromatograph apparatus in series. In a typical procedure, a mixture of $\frac{1}{k}$ and an appropriate internal standard (quinoline, o-xylene or mesitylene) was injected with a micro injector into the reactor. The 2-alkoxypyrazines \downarrow were prepared by the method reported previously.¹

References

- 1. T. Konakahara and Y. Takagi, Bull. Chem. Soc. Jpn., 1977, 50, 2734.
- 2. T. Konakahara, K. Kuwata and Y. Takagi, Abstr. No. 2-3, 12th Symposium of Organic Mass Spectrometry, Tokyo, November 1977.
- 3. T. Konakahara. Y. Takagi and T. Kuwana, Abstr. No. 3K07, 35th National Meeting of the Chemical Society of Japan, Sapporo, August 1976; T. Konakahara and Y. Takagi, Abstr. No. 2R14, 36th National Meeting of the Chemical Society of Japan, Osaka, April 1977; T. Konakahara, **X.** Kuwata and **Y.** Takagi, Abstr. No. 1127. 38th National Meeting of the Chemical Society of Japan, Nagoya, October 1978.
- 4. R. Taylor, J. Chem. Soc. Chem. Comm., 1978, 732.
- 5. When λ was heated at 555.6 °C for 3.68 s, most of λ i was recovered (>98%).
- 6. The pK_a values of pyrazine itself are 0.65 and -5.8, and that of pyridine is 5.17. **⁷**
- 7. W. H. Cheeseman and E. S. G. Werstiuk, "Advances in Heterocyclic Chemistry," Vol. 14, ed. A. R. Katritzky and A. J. Boulton, Academic Press, New York (1972) , p.99.
- 8. R. Taylor, J. Chem. Soc. Perkin Trans. 2, 1975, 1025.
- 9. R. Taylor, G. G. Smith and W. H. Wetzel, J. Am. Chem. Soc., 1962, 84, 4817.
- 10. Most of the hydrogen abstruction in the reaction of μ may occur at the 1methyl group in the 1,2-dimethylpropyl one.

Received, 30th November, 1978