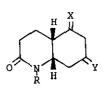
HETEROCYCLES, Vol 12, No 3, 1979

OCTAHYDRO-7(1H)-QUINOLONES. VI.¹ ON THE INTERCONVERSION OF N-SUBSTITUTED CIS- AND TRANS-DECAHYDROQUINOLINE-2,5-DIONES

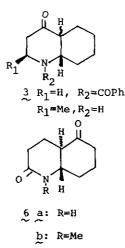

Takefumi Momose, [•] Shuji Uchida, Tatsuo Miyata, Kiyomi Ohshima, Kampoo Chiamchittrong, and Takeshi Imanishi² Faculty of Pharmaceutical Sciences, Osaka University Yamada-kami, Suita 565, Japan

<u>Abstract</u> — The equilibrium points for the isomerization of <u>cis</u>- and <u>trans</u>-decahydroquinoline-2,5-dione analogues (5 and 6) were investigated under basic and acidic conditions. The results can be explained by taking account of the equilibrium constant (K_2) for conformer 5' (<u>cis</u>) \rightleftharpoons <u>trans</u>-isomer (6).

Two contrasting results have been reported concerning the isomerization experiments on decahydroquinolin-5-ones: in N-methyl compounds (Ia and 2a) an equilibrium mixture with predominance of the <u>trans</u>-isomer (1a) was obtained while in N-benzoyl compounds (1b and 2b) the <u>trans</u>-isomer was irreversibly converted into the <u>cis</u>isomer.^{3,4} Such an interesting phenomenon has also been found in a series of

b: R=COPh

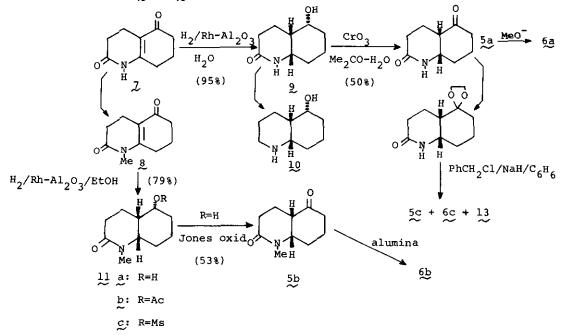
4 R=H, Me, CH₂Ph X=H₂, O, OCH₂CH₂O Y=H₂, O, OCH₂CH₂O



b: R=COPh

 $\stackrel{5}{\sim} \stackrel{a: R=H}{\underset{i}{\sim}} R=Me$

 $\stackrel{c: R=CH}{\sim} 2^{Ph}$



c: R=CH₂Ph

-393-

decahydroquinolin-4-ones (\mathfrak{Z}) .⁵ In a previous report,¹ we have described the conformational equilibrium in <u>cis</u>-octahydrocarbostyrils (\mathfrak{Z}) , and, on the basis, we deal here with the systematic experiments on interconversion of N-substituted <u>cis</u>and <u>trans</u>-decahydroquinoline-2,5-diones (\mathfrak{Z}) and \mathfrak{E} .

The preparation of 5 and 6 was furnished starting from the readily available vinylogous imides $(\frac{7}{2} \text{ and } \frac{8}{2})^{3,7}$ as briefly depicted below.

The stereochemistry of 9 was confirmed by its transformation into a known compound (10), and that of 11 was assigned on the basis of ¹H-NMR spectral evidences on its O-acetyl and O-mesyl derivatives (11b and 11c).

Conditions employed for isomerization of 5 and 6 comprise their treatments with a) sodium methoxide in methanol at room temperature and b) p-toluenesulfonic acid in boiling benzene. Results of the interconversions are summarized in Table I. Determination of the <u>cis/trans</u> ratios was based on the integration of each C_{8a}^{-} proton signal⁸ for <u>cis-</u> and <u>trans-isomers in ¹H-NMR</u> spectra. Under kinetic control, enol or enolate is known to be formed by removal of an axial proton attached to the carbon atom adjacent to the carbonyl group.⁹ Therefore, the <u>trans-isomer</u> (6) or conformer 5' of the <u>cis-isomer</u> (5) gives the isomerization intermediate (12) <u>via</u> enolization while conformer 5' remains unchanged. And the interconversion under the basic condition is interpreted as a result of sum of

Compounds	Conditions	Relative Ratio	
		<u>cis</u> : <u>trans</u>	
5a	A, 24 hr	42 58	
	B, 15 hr	45 55	
5b Ƴ	A, 24 hr	77 23	
	B, 3 hr	75 25	
5c	A, 24 hr	85 15	
	B, 3 hr	67 33	
6a ∼	A, 24 hr	46 54	
	B, 15 hr	39 61	
<u>бр</u>	A, 24 hr	73 27	
	B, 5 hr	74 26	
6c	A, 24 hr	71 29	
	B, 7 hr	67 33	

Table I. Interconversion of cis- and trans-decahydroquinoline-2,5-diones

A: MeONa in MeOH at room temperature.

B: p-TsOH in boiling benzene.

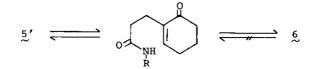
equilibriums I and II: equilibrium I is the one between conformer 5' and 5', and equilibrium II is the other between conformer 5' and the <u>trans</u>-isomer (6). The equilibrium constants (K_1) for equilibrium I ($5' \rightleftharpoons 5'$) are given from our previous report,¹ and the equilibrium constants (K_0) for the whole isomerization ($5 \rightleftharpoons 6$) are calculated on the basis of the values in Table I. Thereby, the values of the equilibrium constant (K_2) for equilibrium II ($5' \rightleftharpoons 6$) are calculated according to the equation:

$$\kappa_{0} = \frac{[6]}{[5'] + [5'']} = \frac{\kappa_{2}[5']}{[5'] + [5']/\kappa_{1}} = \frac{\kappa_{2}}{1 + 1/\kappa_{1}}$$



Table II. The values of equilibrium constants

N-Substituent (R)	ĸ _l	к _о	к2
R=H	2.1	1.38	2.0
R=Me	0.41	0.299	1.0
R=CH2Ph	0.19	0.176	1.1


These values are summarized in Table II. The difference in K_2 values reflects the conformational situation where the severe steric interaction between the N-substituent (R) and C_8 -methylene operates for R=Me or CH₂Ph in both 5' and 6 while small for R=H.¹ And as a result, the <u>trans</u>-isomer is favored for R=H while the <u>cis</u>-isomer is favored for R=Me, CH₂Ph. This concept is widely applicable to other related systems,^{3,4} i.e. 1 and 2.

Under the acidic condition, a small amount of an α,β -unsaturated ketone (13) was isolated when the N-substituent is benzyl.¹⁰ Formation of 13 indicates the concomitant alternative route for the isomerization.

δ:4.4(d)

This route involves the retro-Michael cleavage of the N-C $_{8a}$ bond similarly to the isomerization of the octahydro-7(lH)-quinolone system.⁶ The

<u>trans</u>-isomer seems to be accumulated <u>via</u> this route Ph $\delta:5.9(m)$ under the acidic condition, and thereby the proportions of the <u>trans</u>-isomers (5c) and 6c) are somewhat higher than those under the basic condition.

REFERENCES AND NOTES

- The previous paper entitled "Conformational Equilibrium in <u>cis</u>-Octahydrocarbostyrils." [T. Momose, T. Miyata, and T. Imanishi, <u>Heterocycles</u>, 1978, <u>9</u>, 17] constitutes Part V of this series.
- Present address: Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920, Japan.
- 3. C.A. Grob and H.R. Kiefer, <u>Helv. Chim. Acta</u>, 1965, <u>48</u>, 799.
- R.A. Johnson, H.C. Murray, L.M. Reinke, and G.S. Fonken, J. Org. Chem., 1968, 33, 3207.
- 5. W.L.F. Armarego, "Stereochemistry of Heterocyclic Compounds," Vol. I, John Wiley & Sons, Inc., New York, pp 217-218.
- 6. In Part III [T. Momose, S. Uchida, E. Hosoya, M. Kinoshita, and T. Imanishi, <u>Chem. Pharm. Bull</u>., 1978, 26, 620], we reported the <u>cis</u> <u>→</u><u>trans</u> isomerization of octahydro-7(1H)-quinolone and decahydroquinoline-2,7-dione analogues.
- 7. E.H.M. Böhme, Z. Valenta, and K. Wiesner, Tetrahedron Lett., 1965, 2441.
- 8. The signal appears in good separation between both isomers and in the region remote from the other ring protons.
- 9. H.O. House, "Modern Synthetic Reactions," W.A. Benjamin, Inc. Menlo Park, California, 1972, Chapter 9.
- 10. When R is methyl, a similar intermediate seems to be also formed but fails to be isolated.

Received, 30th November, 1978

13