HETEROCYCLES. Vo1.12. No.4. 1979

y-BROMINATION OF QUINOLINE AND PYRIDINE N-OXIDES

Hirohisa Saito and Masatomo Hamana* Faculty of Pharmaceutical Sciences, Kyushu University Maidashi 3-1-1, Higashi-ku, Fukuoka 812, Japan

Abstract-----Treatment of quinoline 1-oxide (1) with bromine (2) equiv.) and thallium triacetate (3 equiv.) in acetic acid at 50° for 29 hr produces 4-bromoquinoline 1-oxide **(2)** in 65.8 % yield. Similarly, quinaldine and 3-bromoquinoline 1-oxides (5 and 12) give the corresponding y-bromo derivatives (6 and 13) in good yields. From the reaction of 2-cyanoquinoline 1-oxide (8) , 2-cyano-4-hromoquinoline 1-oxide **(2)** and 2-carbamoyl-4-bromoquinoline 1-oxide (10) are obtained. The reactivity of N-oxides of pyridine series is somewhat lover and pyridine and 2-picoline 1-oxides resist bromination under similar conditions, but **2,6** lutidine, 3-picoline and $3,5$ -lutidine 1-oxides $(14, 16$ and $18)$ afford the corresponding γ -bromo derivatives (15, 17 and 19).

Contrary to the facile y-nitration of pyridine and quinoline 1-oxides, the corresponding y-halogenation has long been rather difficult^{1,2}. For instance, H. den Hertog and his co-workers obtained 2-bromo- and 4-bromo-pyridine 1-oxides in a total yield of 10 % on heating pyridine 1-oxide with excess bromine in 90 % sulfuric acid at 200° in the presence of silver sulfate³. Ochiai and Okamoto⁴ have reported that 4-bromoquinoline 1-oxide is formed in 32 % yield when the perbromide of quinoline 1-oxide (C_QH₇ON.1/2HBr₃) was shaken with bromine water in a sealed tube at room temperatures, however its reproducibility is rather poor for the synthetic procedure.

We now wish to report the successful γ -bromination of quinoline and pyridine 1 oxides under rather mild conditions by means of bromine and thallium triacetate. A solution of quinoline 1-oxide $(1, 0.8 g)$, bromine $(1 g, 1.1 equiv.)$ and thallium triacetate (2.3 g, 1.1 eyuiv.) in acetic acid 110 ml) **was** stirred at room tempera-

 $-475-$

tures. While thallium triacetate dissolved in a little while, no reaction **occurred** and 1 was recovered almost quantitatively after 24 hr's reaction. However when the same reactants were warmed at 70° for 3 hr, 4-bromoquinoline 1-oxide (2) , colorless needles, mp 127-128.5°, and quinoline (4) were obtained in 14.5 and 4.2 % yields, respectively, accompanied by recovery of $\frac{1}{n}$ in 45 % (Exp. 3 in Table I). Representative results obtained under various conditions are given in Table I.

Table I. Bromination of Quinoline 1-oxide (1)

These results indicate that the reaction is fairly affected by the reaction temperature and the amount of reagents. While the reaction is very slow at room temperatures, warming at $50-60^\circ$ substantially promotes the reaction to give 2 in $10-$ 22 % yields even when molar equivalent amounts of bromine and thallium triacetate were used, but higher reaction temperatures (over 70°) conversely decrease the yield of *2.* The use of two or three molar excess of the reagents was apparently favorable for the y-bromination, and the best yield (65.8 %) was obtained from a run under the conditions of Exp. 9 shown in Table I. A small amount of 4-bromoquinoline *(3)* was also formed as a by-product in reactions using excess reagents. Subsequently, bromination of some derivatives of **was** carride out (Chart 1). While lepidine 1-oxide gave no bromo derivative, quinaldine 1-oxide *(5)* underwent γ -bromination more readily than 1 to afford 4-bromoquinaldine 1-oxide (6), pale yellow needles, mp 141-143°, and 4-bromoquinaldine (7) , bp 130°/4 mm. (picrate, mp

 $-476-$

246-247°) in 63 and 0.9 % yields, respectively. In view of its high susceptibil1ty to bromination, it is very noteworthy that the active 2-methyl group was inert to bromination under the above conditions. The structures of 6 and 7 were confirmed by their independent syntheses from 4-nitroquinaldine N-oxide⁵.

Chart 1.

The reaction of 2-cyanoquinoline 1-oxide (8) resulted in the formation of 2-cyano-4-bromoquinoline 1-oxide (9), pale yellow needles, mp 188-189°, 2-carbamoyl-4bromoquinoline 1-oxide (10), colorless needles, mp 278-279°, and 2-carbamoylquinoline 1-oxide (11)⁶, colorless plates, mp 223°, in the respective yields of 22.5, 11.2 and 5.4 %. It was clarified by separate reactions that 8 was convertible into 12 by the action of thallium triacetate in acetic acid, and 12 originated only from **2** but not from **1_1.** Bromination of 3-bromoquinoline 1-oxide (12) produced 3,4-dibromoquinoline 1-oxide (13), colorless needles, mp 146-147°, in a high yield of 95.7 8.

The reactivity of N-oxides of pyridine series was found to be considerably lower compaerd to that of quinoline 1-oxides. Thus any brominated products could not be isolated from reactions of pyridine and 2-picollne 1-oxides in spite of many at-

tempts under various conditions, the N-oxide being recovered in each case. However, 2,6-lutidine l-oxide (14) afforded 4-bromo-2,6-lutidine l-oxide (15), colorless needles, mp 67-68', under the conditions shown in Chart 2. 3-Picoline 1 oxide (12) and 3,5-lutidine 1-oxide **(18)** were more reactive as expected, and the corresponding 4-bromo derivatives $\frac{17}{2}$, colorless pillars, mp 112-113° (59.2 %) and 18, colorless needles, mp 199' (72.8%), were obtained, respectively. The structures of 15, 17 and 19 were unambiguously established by elemental analyses, the mass and NMR spectrometry.

Chart 2.

The orienting effect of N-oxide function apparently operates not only in the formation of **1_5** but also in that of 17, because 3-picoline is known to give not 4 bromo derivative by the usual bromination procedure⁸. Although no information is available on bromination of 3,5-lutidine, it may be reasonably assumed that the
directing effect of N-oxide function appears also in the formation of 19 . directing effect of N-oxide function appears also in the formation of 19. Further studies are in progress to explore the scope of the reaction and elucidate the mechanism.

ACKNOWLEDGEMENT

We are grateful both to a Grant-in Aid for Chemical Research in Development and Utilization of Nitrogen-Organic Resources from the Ministry of Education, Science and Culture, Japan, and to Takeda Science Foundation for partial financial support of this work.

REFERENCES

- 1. E. Ochiai, Aromatic Amine Oxides , Elsevier Publishing Co., Amsterdam, 1967, pp. 210 - 246. E. Ochiai, [']Aromation
pp. 210 - 246.
A. R. Katritzky and
Academic Press, Long
H. C. van der Plas,
<u>Letters</u>, 1961, 32.
E. Ochiai and T. Ok
- 2. A. R. Katritzky and **J.** M. Lagowski, Chemistry of the Heterocyclic N-Oxides , Academic Press, London and New York, 1971, pp. 231 - 258.
- 3. H. C. van der Plas, H. **2'.** den Hertog, M. van Ammers, and **B.** Haase, Tetrahedron
- 4. E. Ochiai and T. Okamoto, Yakugaku Zasshi, 1947, 67, 87.
- 5. E. Ochiai and K. Satake, Yakugaku Zasshi, 1951, **2,** 1078.
- 6. T. Takahashi and Y. Hamada, Yakugaku Zasshi, 1955. *3,* 1434.
- 7. I. Itai and H. Ogura, Yakugaku Zasshi, 1955, 75, 242 ; They reported that compound 17 melted at 72-73°. However, we confirmed that their sample contained a small amount of water and the pure crystals of **17** melted at 112-113".
- 8. L. van der Does and H. J. den Hertog, Rec. Trav. Chim. Pays-Bas, 1965, 84, 951.

Received, 21st December, 1978