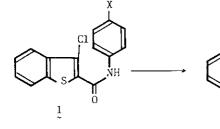
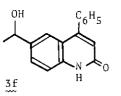
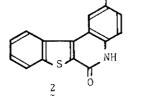
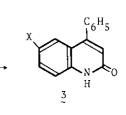

A FACILE SYNTHESIS OF 4-PHENYLCARBOSTYRILS AND 4-PHENYLISOCARBO-STYRIL INVOLVING PHOTOCYCLIZATION OF BENZO[b]THIOPHENE-2-CARBOX-ANILIDES AND 2-BENZOYLAMINO-3-CHLOROBENZO[b]THIOPHENE

Shinzo Kano, Toshihiko Ozaki, and Satoshi Hibino Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

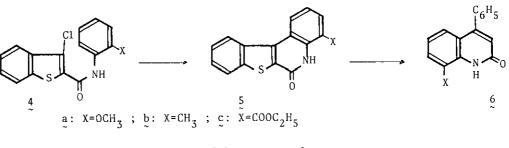

<u>Abstract</u> — Photocyclization of 3-chlorobenzo[b]thiophene-2carboxanilide afforded 1-benzothiophene[2,3-c]quinolin-6-one, which upon desulfurization gave 4-phenylcarbostyril (3a). In this way, 4-phenyl-6-substituted-carbostyrils (3b), (3c), (3d) and (3f) and 8-substituted analogues (6a), (6b) and (6c) were also obtained. This approach to 4-phenylcarbostyrils was applied to a synthesis of 4-phenylisocarbostyril (12) through photocyclization of 2-benzoylamino-3-chlorobenzo[b]thiophene.

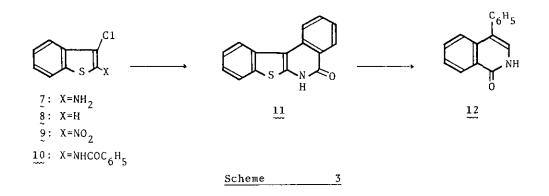

Photocyclization of α,β -unsaturated anilides giving 4-substituted 3,4-dihydrocarbostyrils was reported by Ogata¹ and Chapman^{2,3} and this reaction was extended to the synthesis of a wide range of hardly accessible heterocycles by substituting a heterocylic ring such as pyridine, pyrimidine, pyrazine, imidazole for phenyl of the anilides⁴. Most of these reaction proceeded in moderate yield. However, photocyclization of the cinnamic acid anilide resulted in failure^{1,5}. Photocyclization of anilides of the appropriate heteroaromatic acids⁶ possessing a styrene moiety, such as benzo{b]thiophene can be applied to a synthesis of 4-phenylcarbostyrils, if X can be removed after cyclization. (Scheme 1). By this method, 4-phenylcarbostyrils can be easily obtained. Upon consideration of this design for 4-phenylcarbostyrils, sulfur was picked as one of most suitable atom for X, since sulfur is easily removable⁷ after cyclization. From these points of view, we investigated the synthesis of 4-phenylcarbostyrils by an application of photocyclization of 3-chlorobenzo[b]thiophene-2carboxanilides. These results were described in this paper.


-489-



Irradiation of 3-chlorobenzo[b]thiophene-2-carboxanilide $(\underline{la})^8$ in acetone, prepared by condensation of 3-chlorobenzo[b]thiophene-2-carbonyl chloride⁹ with aniline in benzene in the presence of triethylamine, afforded 1-benzothiophene-[2,3-c]quinolin-6-one $(\underline{2a})^{8,10,11,12}$ in 70 % yield. Desulfurization of 2a with Raney Ni gave 4-phenylcarbostyril $(\underline{3a})^{13}$ in 65 % yield. This approach to 3a was applied to the preparation of 4-phenyl-6-substituted-carbostyrils. The amide $(\underline{1b}), (\underline{1c}), (\underline{1d})$ and $(\underline{1e})$ were prepared as in the formation of 1a. On irradiation of these amides $(\underline{1b-1e})$ the corresponding 2-substituted 1-benzothiophene-[2,3-c]quinolin-6-ones $(\underline{2b}), (\underline{2c}), (\underline{2d})$ and $(\underline{2e})$ were obtained. Desulfurization of $(\underline{2b}), (\underline{2c})$ and $(\underline{2d})$ gave 6-methoxy-4-phenylcarbostyril $(\underline{3b}), 6-methyl-4-$





a: X=H ; b: X=OCH₃ ; c: X=CH₃ ; d: X=COOC₂H₅ ; e: X=COCH₃

phenylcarbostyril (3c) and ethyl 4-phenylcarbostyril-6-carboxylate (3d) in good yield, respectively. In the case of 2e, reduction of acetyl group occurred during desulfurization affording 6-(α -hydroxy)ethyl-4-phenylcarbostyril (3f) in 15 % yield. Furthermore, in a similar fashion, photocyclization of the anilides (4a), (4b) and (4c) was also examined to yield the corresponding 4-substituted 1-benzothiophene[2,3-c]quinolin-6-ones (5a), (5b) and (5c), respectively. Desulfurization of (5a-5c) afforded the corresponding 4-phenyl-8-substituted-carbostyrils (6a), (6b) and (6c), respectively. Physical character and yields of these products are listed in the Table 1. Thus, photocyclization of benzo[b]thiophene-2-carboxanilides followed by desulfurization of the photo-products was shown to be a unique method for the approach to a variety of 4-phenylcarbostyrils with varying yields. (Scheme 2).

Finally, this synthetic design of carbostyrils was applied to the synthesis of 4-phenylisocarbostyril. Condensation of 2-amino-3-chlorobenzo[b]thiophen (7), derived from 3-chlorobenzo[b]thiophene (8)¹⁴ (8 \longrightarrow 9 \longrightarrow 7), and benzoyl chloride yielded the amide (10), which was subjected to photocyclization in benzene. The photo-product (11; 25 %), mp >290 °C, was treated with Raney Ni in ethanol under reflux to give 4-phenylisocarbostyril (12)¹⁵ in 80 % yield. Thus, the ease of synthesis of the amides and the photo-products makes this approach to 4-phenylcarbostyrils and 4-phenylisocarbostyril an attractive synthetic design.

Amide	Photo-product			4-Phenylcarbostyril			
	Υ	ïeld	mp °C		Yield	mp °C	NMR Spectra: ppm
		(%)			(%)		
1a	2a	70	>290	3a	65	265-266	(CD ₃ OD) 6.57 (s, 1H), 7.40-8.0 (m, 9H)
			(EtOH)	1		(benzene)	J
1b	2b	35	>290	3b	70	255-256	(CD ₃ OD) 3.70 (s, 3H), 6.53 (s, 1H), 6.83-8.23
			(EtOH)			(benzene)	5
lc	2c	40	>290	3c	99	241-242	(CD ₃ OD) 2.33 (s, 3H), 6.67 (s, 1H), 7.15-8.15
	L		(EtOH)			(benzene)	(m, 8H)
1d	2d	98	>290	3d	99	294-295	(CDC1 ₃ -d ₆ -acetone) 1.30 (t, J=8 Hz, 3H), 4.27 (q,
	L		(EtOH)			(EtOH)	J=8 Hz, 2H), 6.45 (s, 1H), 7.17-8.33 (m, 8H)
le	2e	80	>290	3f	15	224-225	(CD ₃ OD) 1.42 (d, J=6 Hz, 3H), 4.82 (q, J=6 Hz, 1H),
			(EtOH)			(MeOH)	6.55 (s, 1H), 7.37-8.03 (m, 8H)
4a	5a	35	>290	<u>6a</u>	55	186-188	(CDC1 ₃) 3.98 (s, 3H), 6.57 (s, 1H), 6.83-7.77
			(EtOH)			(benzene)	(m, 8H)
4b	5b	90	>290	6b	80	222-223	(CDC1 ₃) 2.58 (s, 3H), 6.58 (s, 1H), 7.18-7.72
			(EtOH)			(benzene)	(m, 8H)
4c	5c	75	224-225	6c	80	139-140	(CDC1 ₃) 1.45 (t, J=7 Hz, 3H), 4.45 (q, J=7 Hz, 2H),
			(EtOH)			(benzene-	6.60 (s, 1H), 6.90-8.42 (m, 8H)
						EtOH)	

Table 1. Synthesis of 4-phenylcarbostyrils (3 and 6) through desulfurization of 1-benzothiophene[2,3-c]quinolin-6-ones (2 and 5)

References

- 1. Y. Ogata, K. Takagi, and I. Ishino, J. Org. Chem., 36, 3975 (1971).
- 2. O. L. Chapman and W. R. Adams, J. Amer. Chem. Soc., 90, 2333 (1968).
- 3. P. G. Cleveland and O. L. Chapman, Chem. Commun., 1967, 1064.
- 4. M. Ogata and H. Matsumoto, Chem. Pharm. Bull., 20, 2264 (1972).
- 5. Also in our investigations, only the starting material was recovered. Photo reaction was carried out by the use of 300 W high pressure mercury lamp, Halos PIH-300 instrument.
- 6. E. Winterfeldt and H. J. Altmann, Angew. Chem., 80, 486 (1968).
- A. I. Meyers, 'Heterocycles in Organic Synthesis, 3', p 269, John Wiley & Sons, New York (1974).
- 8. M. Terashima, K. Seki, K. Itoh, and Y. Kanaoka, 'Abstracts of Papers, 97th Annual Meeting, Pharmaceutical Society of Japan, Tokyo, Apr.5-7, 1977, Part II ', p 56.
- 9. W. B. Wright, Jr. and H. Brabander, J. Heterocyclic Chem., 8, 711 (1971).
- Y. Kanaoka, K. Itoh, Y. Hatanaka, J. L. Flippen, I. L. Karle, and B. Witkop, <u>J. Org. Chem.</u>, 40, 3001 (1975).
- 11. M. Terashima, K. Seki, K. Itoh, and Y. Kanaoka, Heterocycles, 8, 421 (1977).
- 12. Y. Kanaoka, K. Itoh, and Y. Hatanaka, Heterocycles, 3, 1106 (1975).
- 13. E. Ritchie, J. Proc. Roy. Soc., 80, 33 (1946).
- 14. S. Nakagawa, J. Okumura, F. Sakai, H. Hoshi, and T. Naito, Tetrahedron Lett., 1970, 3719.
- 15. E. F. M. Stepheson, J. Chem. Soc., 1956, 2557.

Received, 5th January, 1979