HETEROCYCLES, Vol. 12, No. 4, 1979

EFFECTIVE CATALYTIC ASYMMETRIC SYNTHESIS OF S-(-)-3-METHOXY-CARBONYL-4-(3,4-METHYLENEDIOXYPHENYL)BUTANOIC ACID. A SIMPLE AND EFFECTIVE ROUTE TO CHIRAL LIGNANS¹

Kazuo Achiwa

Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

<u>Abstract</u> - Effective catalytic asymmetric synthesis of S-2, a key intermediate for the synthesis of chiral lignans, was described. Thus, BPPM-Rh⁺ in the presence of triethylamine gave S-2 in 78% optical yield.

Chiral pyrrolidinephosphine-rhodium catalysts have been proven to be practically useful for the preparation of chiral α -amino acids (83-91% optical yields)^{2,3}), salsolidine (45%)⁴, α -hydroxy esters (78.5%)^{5,6}), R-(-)-pantolactone (80.5-86.7%)^{7,8}), β -amino acids (53-55%)⁹), α -methylsuccinic acid (94.2%)¹⁰⁻¹²) and β -methylaspartic acid (58.2%)¹³), and also the mechanistic studies¹⁴) on these asymmetric hydrogenations suggested that the β , γ -unsaturated acid is one of the most suitable substrates for the asymmetric hydrogenations catalyzed by chiral pyrrolidinephosphine-rhodium complexes to obtain the high optical yields. I wish to describe here an effective asymmetric hydrogenation of (E)-1¹⁵, a β , γ -unsaturated acid derivative, to give S-2, a key intermediate for the synthesis of chiral lignans, steganacin, steganagin and podophyllotoxin, antileukemic agents¹⁶.

In a typical experiment, the asymmetric hydrogenation of (E)- $\frac{1}{2}$ (1 mmole) was run in methanol (3 ml) under an initial hydrogen pressure of 50 atm at 50°C for 20 h in the presence of [Rh(COD)BPPM]⁺ClO₄ (BPPM-Rh⁺) (0.01 mmole). After removal of the solvent, the residue was treated with 3 ml of 0.5N-NaOH and the mixture was filtered to remove the catalysts. Then, the filtrate was acidified with HCl and ethereal extract gave 2, $[\mathbf{a}]_D^{20}$ -27.3° (c 2.53, methanol) in a 91% isolated yield. The absolute configuration and optical purity of 2 were determined by converting (-)-2 ($[\mathbf{a}]_D^{20}$ -26.3° (methanol)) into S- 3^{17} , $[\mathbf{a}]_D^{20}$ -2.6° (c 1.058, chloroform), on LiAlH₄ reduction. Therefore, the specific rotation of pure S-2 was calculated to

be $[\mathbf{d}]_{D} = 35^{\circ}$ (methanol).

Scheme I.

Table I. Catalytic asymmetric hydrogenation of the β , γ unsaturated acid^{a)}

Chiral reagent(RCC	-) Solvent $[d]_D^{20}$ (magnetic formula in the second s	ethanol)	Optical	y.(conf) ^d
$ BPPM-Rh^+ (t-BuOCO BPPM-Rh^+ (t-BuOCO BPPM-Rh^+ (t-BuOCO BPPM-Rh^+ (t-BuOCO BZPPM-Rh^+ (PhCO-) BZPPM-Rh^+ (PhCO-) BZPPM-Rh^+ (PhCO-) $	<pre>-) methanol -) methanolb) -) methanolb,c) -) tetrahydrofuranb methanol methanolb) tetrahydrofuran^b</pre>	$\begin{array}{c} -20.1^{\circ} \\ -27.3 \\ -27.4 \\ -8.1 \\ -23.5 \\ -26.3 \\ -10.0 \end{array}$	57% 78 78 23 67 75 29	(S) (S) (S) (S) (S) (S) (S)

- a) All hydrogenations were run with 1 mmole of substrate, 0.01 mmole of [Rh(COD)bisphosphine]⁺ClO₄ in 3 ml of solvent at 50°C for 20 h under an initial hydrogen pressure of 50 atm unless otherwise cited.

- b) Triethylamine (0.5 mmole) was added.
 c) At 20°C for 30 h.
 d) [**d**]_D -35° (MeOH) was used for pure S-2. See the Text.

HETEROCYCLES, Vol 12, No. 4, 1979

Table I indicated clearly that BPPM-Rh⁺ gave the better optical yields than BZPPM-Rh⁺. This fact suggests that the suitable modifications of the N-substituent of the chiral ligands may improve the optical yields of the product. It should be also noted that this hydrogenation offered the practically useful route to chiral lignans¹⁶⁻¹⁹.

Further modifications of chiral catalysts and applications of the catalytic asymmetric hydrogenations catalyzed by pyrrolidinephosphine-rhodium complexes to the synthesis of chiral and biologically active compounds are actively under way.

REFERENCES AND NOTES

- 1. Asymmetric Reactions Catalyzed by Chiral Metal Complexes. XVII.
- 2. K.Achiwa, J.Am.Chem.Soc., 1976, 98, 8265.
- 3. K.Achiwa, Chemistry Letters, 1977, 777.
- 4. K.Achiwa, <u>Heterocycles</u>, 1977, 8, 247.
- 5. K.Achiwa, Tetrahedron Letters, 1977, 3735.
- 6. I.Ojima, T.Kogure, and K.Achiwa, J.C.S. Chem. Comm., 1977, 428.
- 7. K.Achiwa, T.Kogure, and I.Ojima, Tetrahedron Letters, 1977, 4431.
- 8. K.Achiwa, T.Kogure, and I.Ojima, Chemistry Letters, 1978, 297.
- 9. K.Achiwa, and T.Soga, Tetrahedron Letters, 1978, 1119.
- 10. K.Achiwa, Tetrahedron Letters, 1978, 1475.
- 11. K.Achiwa, Chemistry Letters, 1978, 561.
- 12. I.Ojima, T.Kogure, and K.Achiwa, Chemistry Letters, 1978, 567.
- 13. K.Achiwa, Tetrahedron Letters, 1978, 2583.
- 14. K.Achiwa, Y.Ohga, Y.Iitaka, and H.Saito, Tetrahedron Letters, 1978, 4683.
- 15. This stereochemistry was assigned on the basis of the Stobbe reaction mechanism.
- 16. F.E.Ziegler, K.W.Fowler, and N.D.Sinha, <u>Tetrahedron Letters</u>, 1978, 2767, and the references cited therein.
- 17. The maximum rotation of R-3 is [A]²⁰_D + 4.8° (c 1.142, CHCl₃); M.Kuhn and A von Wartburg, <u>Helv.Chim.Acta</u>, 1967, 50, 1546. This compound (S-3) thus obtained was also converted to (2R,3S,6R)-podorhizol and (2R,3S,6S)-epi-podorhizol according to the reported conditions¹⁸.
- 18. E.Brown, J.P.Robin, and R.Dhal, J.C.S. Chem.Comm., 1978, 556.
- 19. K.Tomioka, H.Mizuguchi, and K.Koga, Tetrahedron Letters, 1978, 4687.

Received, 27th January, 1979