HETEROCYCLES. Vo1.12. *No.4.* 1979

EFFECTIVE CATALYTIC ASYMMETRIC SYNTHESIS OF S-(-)-3-METHOXY-**CARBONYL-4-(3.4-METHYLENEDI0XYPHENYL)BUTANOIC** ACID. A SIMPLE AND EFFECTIVE ROUTE TO CHIRAL LIGNANS¹⁾

Kazuo Achiwa

Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Abstract - Effective catalytic asymmetric synthesis of 5-2, a key intermediate for the synthesis of chiral lignans, was described. Thus, BPPM-Rh⁺ in the presence of triethylamine gave $S-2$ in 78% optical yield.

Chiral pyrrolidinephosphine-rhodium catalysts have been proven to be practically useful for the preparation of chiral α -amino acids (83-91% optical yields)^{2,3)}, salsolidine $(45\frac{3}{4})$, α -hydroxy esters $(78.5\frac{5}{6})$, R-(-)-pantolactone (80.5-86.7%)^{7,8}, β -amino acids (53-55%)⁹, α -methylsuccinic acid (94.2%)¹⁰⁻¹²⁾ and β methylaspartic acid $(58.2%)^{13}$, and also the mechanistic studies¹⁴⁾ on these asymmetric hydrogenations suggested that the β , γ -unsaturated acid is one of the most suitable substrates for the asymmetric hydrogenations catalyzed by chiral pyrrolidinephosphine-rhodium complexes to obtain the high optical yields. I wish to describe here an effective asymmetric hydrogenation of $(E)-L^{15}$, a β , γ unsaturated acid derivative, to give *s-2,* a key intermediate for the synthesis of chiral lignans, steganacin, steganagin and podophyllotoxin, antileukemic agents $^{16)}$. The reaction sequences are shown in Scheme I.

In a typical experiment, the asymmetric hydrogenation of $(E)-1$, (1 mmole) was run in methanol (3 ml) under an initial hydrogen pressure of 50 atm at 50°C for 20 h in the presence of $[Rh(COD)BPPM]+ClO₄⁻ (BPPM-Rh⁺)(0.01 mmole)$. After removal of the solvent, the residue was treated with 3 ml of 0.5N-NaOH and the mixture was filtered to remove the catalysts. Then, the filtrate was acidified with HC1 and ethereal extract gave χ [d]²⁰ -27.3° (c 2.53, methanol) in a 91% isolated yield. The absolute configuration and optical purity of λ were determined by converting $(-)-2$ ($[\alpha]_D^{20}$ -26.3° (methanol)) into $S-3^{17}$, $[\alpha]_D^{20}$ -2.6° (c 1.058, chloroform), on LiAlH₄ reduction. Therefore, the specific rotation of pure S-2 was calculated to

 $-515-$

be $[d]_D -35^\circ$ (methanol).

Scheme I.

Table I. Catalytic asymmetric hydrogenation of the β , γ unsaturated acid^{a)}

		Chiral reagent (RCO-) Solvent $[d]_D^{20}$ (methanol) Optical y. (conf) ^{d)}			
$BPPM-Rh$ ⁺ $BPPM-Rh$ ⁺ $BPPM-Rh$ ⁺ $BPPM-Rh$ ⁺ BZPPM-Rh ⁺ $BZPPM-Rh$ ⁺ $BZPPM-Rh^+$ (PhCO-)	(t-BuOCO-) methanol $(PhCO-)$ $(PhCO-)$	$(t - BuQCO-)$ methanol ^{b)} $(t-BuOCO-)$ methanol ^{b, c}) (t-BuOCO-) tetrahydrofuran ^{b)} methanol methanol ^{b)} tetrahydrofuran ^{b)}	-20.1° -27.3 -27.4 -8.1 -23.5 -26.3 -10.0	57% 78 78 23 67 75 29	(S) (S) (S) (S) (S) (S) (S)

- a) All hydrogenations were run with 1 mmole of substrate, 0.01 mmole of **[Rh(COD)bisphosphine]** ClO_A^{σ} in 3 ml of solvent at 50°C for 20 h under an initial hydrogen pressure of 50 atm unless otherwise cited.
-
-
- b) Triethylamıne (0.5 mmole) was added.
c) At 20°C for 30 h.
d) [**d**]_D -35° (MeOH) was used for pure S-<u>2</u>. See the Text.

HETEROCYCLES, Vol 12. No.4. 1979

Table I indicated clearly that BPPM-Rh⁺ gave the better optical yields than BZPPM- $Rh⁺$. This fact suggests that the suitable modifications of the N-substituent of the chiral ligands may improve the optical yields of the product. It should be also noted that this hydrogenation offered the practically useful route to chiral l ignans $16-19$)

Further modifications of chiral catalysts and applications of the catalytic asymmetric hydrogenations catalyzed by pyrrolidinephosphine-rhodium complexes to the synthesis of chiral and biologically active compounds are actively under way.

REFERENCES AND NOTES

- 1. Asymmetric Reactions Catalyzed by Chiral Metal Complexes. XVII.
- 2. K.Achiwa, J.Am.Chem.Soc., 1976, 98, 8265. 2. K.Achiwa, <u>J.Am.Chem.Soc</u>., 1976, 98, 82
3. K.Achiwa, <u>Chemistry Letters</u>, 1977, 777
4. K.Achiwa, <u>Heterocycles</u>, 1977, <mark>8</mark>, 247.
- 3. K.Achiwa, Chemistry Letters, 1977, 777.
-
- 5. K.Achiwa, Tetrahedron Letters, 1977, 3735.
- 6. I.Ojima, T.Kogure, and K.Achiwa, J.C.S. Chem. Comm., 1977, 428.
- 7. K.Achiwa, T.Kogure, and I.Ojima, Tetrahedron Letters, 1977, 4431.
- 8. K.Achiwa, T.Kogure, and I.Ojima, Chemistry Letters, 1978, 297.
- 9. K.Achiwa, and T.Soga, Tetrahedron Letters, 1978, 1119.
- 10. K.Achiwa, Tetrahedron Letters, 1978, 1475.
- 11. K.Achiwa, Chemistry Letters, 1978, 561.
- 12. I.Ojima, T.Kogure, and K.Achiwa, Chemistry Letters, 1978, 567.
- 13. K.Achiwa, Tetrahedron Letters, 1978, 2583.
- 14. K.Achiwa, Y.Ohga, Y.Iitaka, and H.Saito, Tetrahedron Letters, 1978, 4683.
- 15. This stereochemistry was assigned on the basis of the Stobbe reaction mechanism.
- 16. F.E.Ziegler, K.W.Fowler, and N.D.Sinha, Tetrahedron Letters, 1978, 2767, and the references cited therein.
- 17. The maximum rotation of R-2 is $\left[\phi\right]_D^{20}$ + 4.8° (c 1.142, CHCl₃); M.Kuhn and A von Wartburg, Helv.Chim.Acta, 1967, 50, 1546. This compound (S-3) thus obtained was also converted to (2R,3S,6R)-podorhizol and (2R,3S,6S)-epi-podorhizol according to the reported conditions¹⁸⁾.
- 18. E.Brown, J.P.Robin, and R.Dha1, J.C.S. Chem.Com., 1978, 556.
- 19. K.Tomioka, H.Mizuguchi, and K.Koga, Tetrahedron Letters, 1978, 4687.

Recelved, 27th January. 1979