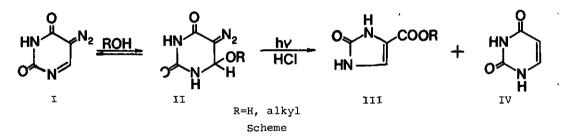
A PHOTO-REARRANGEMENT OF 5-DIAZOURACIL.A CONVENIENT SYNTHESIS OF 2-OXO-4-IMIDAZOLINE-4-CARBOXYLIC ACID DERIVATIVES.¹

Branko Stanovnik, Miha Tišler, and Ernest Vončina

Department of Chemistry, University of Ljubljana, 61000 Ljubljana, Yugoslavia


<u>Abstract</u> - A photochemical transformation of 5-diazouracil alcohol adducts into 2-oxo-4-imidazoline-4-carboxylates under strongly acidic conditions is described.

In the past, 2-oxo-4-imidazoline-4-carboxylic acid derivatives have been synthesized by the condensation of urea and urea derivatives with tartaric acid in fuming sulphuric acid² and by conversion of 5-fluorouracil derivatives in aqueous alkaline solutions³.

On the other hand, 5-diazouracil has attracted a considerable interest because of its bactericidal⁴⁻⁶ and cancerostatic activity^{7,8}. Recently, the structures of 5-diazouracil, 5-diazouracil hydrate and 5-diazouracil methanol adduct and related derivatives have been reinvestigated⁹⁻¹² and some of them confirmed by X-ray analysis¹³. Conversions of 5-diazouracil into 1,2,3-triazole-4-carboxylic acid derivatives have been reported^{12,14}. However, the transformation of 5-diazouracil into 2-oxo-4-imidazoline-4-carboxylic acid derivatives has not been reported so far, in spite of the fact that several other, less attractive, heterocyclic a-diazo ketones have been converted into the corresponding carboxylic acid derivatives since the Süss's first report^{15,16}, most probably because of the great stability of 5-diazouracil alcohol adducts under photochemical reaction conditions in neutral solutions.

In continuation of our studies on the transformation of heterocyclic α -diazo ketones^{17,18} we wish to report a ring contraction of 5-diazouracil into 2-oxo-4-imidazoline-4-carboxylates under photochemical conditions in strongly acidic solutions, according to the Scheme.

-761-

When a suspension of 5-diazouracil (I) (200 mg) or 5-diazouracil hydrate (II, R=H) (200 mg) in an alcohol (20 ml) was irradiated at 254 nm in a Rayonet photochemical reactor RPR 100, the corresponding 5-diazouracil alcohol adducts(II, R=alkyl) were formed within one hour. This transformation is a thermal one, and can be followed by observing the shifting of the diazo peak in IR spectrum from $v_{N_2} = 2150 \text{ cm}^{-1}$ for I or $v_{N_2} = 2120 \text{ cm}^{-1}$ for II (R=H) to $v_{N_2} = 2100 \text{ cm}^{-1}$ for II (R= alkyl). Since these adducts are insoluble in alcohol, they were isolated by filtration and characterized. The details are summarized in Table I.

Table I.	5-Diazouracil	alcohol	adducts	(TT.R=alkvl)

R	Yield ⁸ (%)	d ^{a)} m.p.	Molecu- lar formula ^{b)}	I.R. ^{VN} 2 /cm ⁻¹ /	¹ H-NMR (d_6 -DMSO) τ (ppm)			
					H ₆	R	NH	J/Hz/
сн ₃	86	195 ^{C)}	C5H6N4O3		4,20 (d)	6,75 (s)	1,20(d) 0,3(broa	J _{H6NH} =3,5 ad)
і-С ₃ н ₇	85	169	^C 7 ^H 10 ^N 4 ^O 3	2100	4,15 (d)	6,1 /m,С <u>H</u> (СН ₃) ₂ / 8,9 /d,СН(С <u>Н</u> 3) ₂ /	1,3(d) 0,3 (broad)	J _{H6} NH ^{=3,5} J _{CHCH3} =6,0
n-Bu	64	136	с ₈ н ₁₂ №4 ⁰ 3	2100	4,20 (d)	6,5 /t,C <u>H</u> ₂ (CH ₂) ₂ CH ₃ / 8,6 /m,CH ₂ (C <u>H</u> ₂) ₂ CH ₃ / 9,1 /t,(CH ₂)C <u>H</u> ₃ /	(broad)	J _{H6} NH ^{=3,5} J _{CH2} CH2 ^{=6,6}

a) yields of purified products are given

b) satisfactory analyses (C,H,N) were obtained for all compounds

c) Lit.⁹ 198⁰;

By further irradiation of 5-diazouracil alcohol adducts (II,R=alkyl) elimination of nitrogen was taking place and 2-oxo-4-imidazoline-4-carboxylates (III,R=alkyl) were formed. This transformation was slow in neutral solutions. After 20 hours of irradiation only about 10-15% of the starting material was converted, yielding a mixture of the corresponding ester III and uracil (IV). On the other hand, the conversion proceeds smoothly to completion in 4-5 hours in a solution saturated with dry hydrogen chloride. The reactions were followed and the products separated by T.L.C. (Merck DC-Fertigplatten Kieselgel 60 F254 and a mixture of chloroform and methanol 6:1 as solvent was used). Besides the rearranged products (III, R=alkyl), 1-3% of uracil (IV) as the protodediazonization product was also isolated.¹⁹ An analogous irradiation of 5-diazouracil hydrate (II, R=H) in concentrated aqueous hydrochloric acid afforded 2-oxo-4-imidazoline-4-carboxylic acid (III,R=H). The experimental details are summarized in Table II.

Table II.

2-Oxo-4-imidazoline-4-carboxylic acid derivatives(III)

R Yi	eld ^a) m.p.	Molecular formula ^{b)}	I.R.		¹ Η-NMR (d ₆ -DMSO) τ (ppm)			
/%/		-	m/e M ⁺	vC=0 ∕cm ⁻¹	/ ^H 5	R	NH	J/Hz/	
н	65	270 ^{C)}	C ₄ H ₄ N ₂ O ₃ 128						
Сн ₃	53	280	$^{\rm C}{}_{5}^{\rm H}{}_{6}^{\rm N}{}_{2}^{\rm O}{}_{3}$ 142	1740 1670	(d)				
сн ₂ сн ₃	48	258 ^{e)}	^C 6 ^H 8 ^N 2 ^O 3 156	1750 1670	2,95(d)	6,20(q,С <u>н</u> ₂ Сн ₃) 8,75(t,Сн ₂ С <u>н</u> ₃)	-0,5 -1,2	^J H ₅ NH ^{=5,0} J _{CH2} CH ₃ =6,0	
^{n−C} 3 ^H 7	40	256	^C 7 ^H 10 ^N 2 ^O 3 170	1750 1670	2,9(d)	6,20(t,C <u>H</u> ₂ CH ₂ CH ₃) 8,35(m,CH ₂ C <u>H</u> ₂ CH ₃) 9.05(t,CH ₂ CH ₂ C <u>H</u> ₃)	-1,5 -2,3	J _{H5NH} =5,0 J _{CH2} CH2=6,0 J _{CH2} CH2=6,0	
і-с ₃ н ₇	45	248	^C 7 ^H 10 ^N 2 ^O 3 170	1740 1670	2,85(s)	5,7/m,С <u>н</u> (Сн ₃) ₂ / 8,85/d,Сн(С <u>н</u> 3) ₂ /	-0,45 -1,1	J _{CHCH3} =6,0	
n-C ₄ H ₉	35	236	^C 8 ^H 12 ^N 2 ^O 3 184	1740	2,95(s)	6,20/t,C <u>H</u> ₂ (CH ₂) ₂ CH ₃ 8,50/m,CH ₂ (C <u>H</u> ₂) ₂ CH ₃ 9,07/t,(CH ₂) ₃ C <u>H</u> ₃ /		J _{H5NH} =5,0 J _{CH2} CH2=6,0 J _{CH2} CH2=6,0	

a) Yields of purified products are given

b) satisfactory analyses (C,H,N) were obtained for all compounds

c) Lit.² 261; d) NMR spectrum is identical with that reported in the Lit.³

e) Lit.² 255⁰;

The transformation is supposed to be a photo Wolff rearrangement²⁰ and represents a convenient one step synthesis of 2-oxo-4-imidazoline-4-carboxylates.

REFERENCES AND NOTES

- Presented in part at the VIth Symposium on Chemistry of Heterocyclic Compounds, Brno, Czechoslovakia, July, 4-7, 1978.
- 2 G.E.Hilbert, J.Amer.Chem.Soc., 1932, 54, 3413
- 3 B.A.Otter, E.A.Falco, and J.J.Fox, <u>J.Org.Chem</u>., 1968, 33, 3593.
- 4 T.H.Weisman and L.E.Loveless, Proc.Soc.Exp.Biol.Med., 1954, 86, 268.
- 5 E.Previc and S.Richardson, J.Bacteriol., 1969, 97, 416.
- 6 E.E.Hunt and R.F.Pitillo, Appl.Microbiol., 1968, 16, 1792.
- 7 J.R.Bateman, E.M.Jacobs, A.A.Marsh, and J.L.Steinfield, <u>Cancer Chemother.</u>, <u>Rep.</u>, 1964, No.<u>14</u>, 27.
- 8 A.Goldin, H.B.Wood, and R.R.Engle, <u>Cancer Chemother.Rep.</u>, <u>Suppl.</u> 1, 1969, (Part 2), 1.
- 9 T.C.Thurber and L.B.Townsend, J.Heterocyclic Chem., 1972, 9, 629.
- 10 T.C.Thurber and L.B.Townsend, J.Heterocyclic Chem., 1975, 12, 711.
- 11 T.C.Thurber and L.B.Townsend, J.Amer.Chem.Soc., 1973, 95, 3081.
- 12 T.C.Thurber and L.B.Townsend, <u>J.Org.Chem</u>., 1976, <u>41</u>, 1041, and references cited therein.
- 13 D.J.Abraham, T.C.Cochran, and R.D.Rosenstein, J.Amer.Chem.Soc., 1971, 93,6279.
- 14 S.Romani and W.Klötzer, J.Heterocyclic Chem., 1978, 15, 1349.
- 15 O.Süs, Ann., 1953, <u>579</u>, 135.
- 16 For a review see: M.Tišler and B.Stanovnik, Heterocycles, 1976, 4, 1115.
- 17 B.Stanovnik, M.Tišler, and J.T.Carlock, Synthesis, 1976, 754.
- 18 J.T.Carlock, J.S.Bradshaw, B.Stanovnik, and M.Tišler, <u>J.Org.Chem.</u>, 1977, <u>42</u> 1883.
- 19 When an aqueous solution of hydrochloric acid was used instead of dry hydrogen chloride in these experiments, a mixture of the corresponding ester (III,R=alkyl),acid (III,R=H) and traces of uracil (IV) was isolated. The ratio between the ester (III,R=alkyl) and the acid (III,R=H) was dependent on the amount of water present in the irradiated solution.
- 20 For reviews of the Wolff rearrangement see: W.Kirmse, "Carbene, Carbenoide und Carbenanaloge", Verlag Chemie, Weinheim 1969, p. 166; M.Jones and R.A.Moss, "Carbenes", J.Wiley, New York, N.Y. 1973, p. 173.

Received, 2nd March, 1979