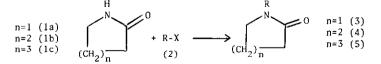
## HETEROCYCLES. Vol 12, No 11, 1979


N-ALKYLATION OF LACTAMS WITH PHASE TRANSFER CATALYST

Hirok: Takahata, Torahiko Hashizume, and Takao Yamazaki Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani, Toyama 930-01, Japan

Abstract—— N-Alkylation of lactams (la,b,c) with alkyl halides (2) with phase transfer catalyst afforded various N-alkyl lactams (3,4, and 5) in good yields.

Reaction using phase transfer catalyst (PTC) has rately been versatile means for substitution, alkylation, carbene formation, oxidation, and so on.<sup>2</sup> However, there have been few papers for N-alkylation of the amide groups with PTC.<sup>3</sup> We now describe studies on N-alkylation of lactams (la,b,c) in a heterogenous solid/liquid system. In contrast to the precedents,<sup>4</sup> a versatile and mild procedure for the preparation of N-substituted lactams was realized by the use of a solid/liquid two phase system consisting of pulverized KOH

and THF as a solvent together with tetrabutylammonium bromide (TBAB).



(2) R-X, a)  $CH_3I$ , b) n-BuBr, c) n-BuC1, d) sec-BuBr, e)  $NCCH_2CH_2C1$ , f)  $(MeO)_2CHCH_2CH_2C1$ g)  $PhCH_2Br$ , h)  $PhCH_2CH_2Br$ , 1)  $O_N - CH_2CH_2C1$ 

General procedure for N-alkylation— A solution of 2 (0.05 mol) and 1 (0.05 mol) in 20 ml of dry THF was added to a suspension of pulverized KOH (0.055 mol) and TBAB (0,01 mol) in 50 ml of dry THF over 1 hr at room temperature. After completion of addition, the reaction mixture (2, X=Br,I) was stirred for 3-7 hr at room temperature. On the other hand, the reaction mixture (2, X=Cl) required a reflux for 2-3 hr. The precipitate was filtered off and the filtrate was evaporated in vacuo to leave an oil, to which was added  $CH_2Cl_2$  and  $H_2O$ . The organic phase was washed with saturated aqeuous NaCl and dried over anhydrous MgSO<sub>4</sub>. Removal of the solvent under reduced pressure gave 3,4, and 5.

| Products | Yield (%) <sup>b</sup> | Condition <sup>C</sup> | b.p,/torr    | Lit, b.p./torr         | I.R. (neat)       |
|----------|------------------------|------------------------|--------------|------------------------|-------------------|
|          |                        |                        | or m.p. (°C) | or m.p. (°C)           | $v = 0 (cm^{-1})$ |
| 3a       | 92 (93) <sup>d</sup>   | r.t. 3 hr              | 76/10        | 202/760 <sup>5</sup>   | 1660              |
| 4a       | 95 (92) <sup>d</sup>   | r.t. 3 hr              | 97/10        | 108/18 <sup>5</sup>    | 1650              |
| 5a       | 96                     | r.t. 3 hr              | 75/2         | 75/1.7 <sup>6</sup>    | 1640              |
| 3b       | 85 (71) <sup>e</sup>   | r.t. 4 hr              | 105/10       | 121/16 <sup>5</sup>    | 1660              |
| 4b       | 82                     | r.t. 4 hr              | 135/11       | 131/11 <sup>5</sup>    | 1660              |
| 5b       | 79                     | r.t. 5 hr              | 101/1        | 121/5 <sup>6</sup>     | 1640              |
| 3c       | 90 (55) <sup>e</sup>   | refl. 2 hr             |              |                        |                   |
| 4c       | 85                     | refl. 2 hr             |              | ·····                  |                   |
| 5c       | 87 (82) <sup>d</sup>   | refl. 3 hr             | - 1 - 11     |                        |                   |
| 3d       | 71                     | r.t. 7 hr              | 101/12       | 101/8 <sup>7</sup>     | 1650              |
| 4d       | 65                     | r.t. 7 hr              | 75/2.5       |                        | 1640              |
| 5d       | 66                     | r.t. 7 hr              | 38           |                        | 1640 <sup>f</sup> |
| 3e       | 71 (72) <sup>d</sup>   | refl. 3 hr             | 140/2        | 121/0.18               | 1660              |
| 4e       | 70 .                   | refl. 3 hr             | 147/2.5      |                        | 1640              |
| 3f       | 70                     | refl. 3 hr             | 110/0.4      |                        | 1640              |
| 4f       | 69                     | refl. 3 hr             | 105/0.1      |                        | 1640              |
| 3g       | 89                     | r.t. 4hr               | 140/2        | 144/39                 | 1660              |
| 4 g      | 91                     | r.t. 4 hr              | 156/4        | 193/8 <sup>5</sup>     | 1640              |
| 3h       | 45                     | r.t. 5 hr              | 140/2        | 105/0.05 <sup>10</sup> | 1660              |
| 4h       | 38                     | r.t. 6 hr              | 43           | 45 <sup>11</sup>       | 1660 <sup>f</sup> |
| 3i       | 45                     | refl. 3 hr             | 65           |                        | 1660 <sup>f</sup> |
|          |                        |                        |              |                        |                   |

Table 1. Formation of N-Substituted Lactams<sup>a</sup>

a) All new products exhibited the expected pmr, ms, and analytical data.

b) Isolated yields after distillation.

c) THF was used as a solvent.

d)  $CH_3CN$  was used as a solvent.

e)  $CH_2C1_2$  was used as a solvent.

f)I.R. (nujol).

The results are summarized in Table 1. The reaction time increases with decreasing amount of catalyst TBAB<sup>12</sup>, and in the absence of catalyst, practically the reaction gave 3b (9%) and 3c (5%) in low yields. Primary halides react faster than secondary ones, and bromides are more reactive than chlorides. The replacement of THF with  $CH_3CN$  caused no changes in yields of the products, but the use of  $CH_2Cl_2$  as a solvent caused decrease in yield.

Next, the compounds (3e and 3f) and (4e and 4f) were used as synthons for the syntheses of 8,13and 5,9-diazasteroids, respectively.<sup>13</sup> We are currently investigating intramolecular N-alkylation of  $\beta$ -halopropionamides with phase transfer catalyst and a useful synthesis of monocyclic  $\beta$ -lactams will be reported soon.

## References and Notes

- This work was presented at the 48th Meeting of the Hokurıku Branch of the Pharmaceutical Society of Japan, Kanazawa, June, 1979.
- 2. a) E.V.Dehmlow, <u>Angew. Chem. Int. Ed. Engl.</u>, 1977, 16, 493. b) C.M.Starks and C.Liotta, "Phase Transfer Catalysis", Academic Press, New York, 1978.
- a) R.Brehme, <u>Synthesis</u>, 1977, 113. b) D.Reuschling, H.Pietsch, and A.Linkies, <u>Tetrahedron</u> Letters, 1978, 615.
- 4. a) S.Sugasawa and M.Kırisawa, <u>Chem. Pharm. Bull. (Tokyo)</u>., 1955, 3, 187. b) G.W.Gribble, J. Org. Chem., 1970, 35, 1944.
- 5. "Dictionary of Organic Compound" Maruzen Company Limited, Tokyo, Japan, 1965.
- 6. B.P.Samuel, S.W.Tinsley, and P.S.Starcher, U.S. 3000879, 1959.
- 7. J.Falbe and F.Korte, Chem. Ber., 1965, 98, 1928.
- 8. H.Oediger, H.J.Kabbe, F.Moeller, and K.Eiter, Chem. Ber., 1966, 99, 2012.
- 9. A.Ykoo and S.Morisawa, Nippon Kagaku Zasshi, 1956, 77, 599.
- 10. H.Stamm, Chem. Ber., 1966, 99, 2556.
- 11. S.Akaboshi, T.Kutsuma, and K.Achiwa, Chem. Pharm. Bull (Tokyo)., 1960, 8, 14.
- 12. The reaction using 10 mol % (TBAB) had longer times compared to that of 20 mol %.
- T.Yamazaki, H.Takahata, and H Okajima, 'Abstracts of Papers, 99th Annual Meeting Pharmaceutical Society of Ja-an, Sapporo, Augast, 1979, p 285.

Received, 10th August, 1979