A FORMAL SYNTHESIS OF (+)-LYCORINE

Bunsuke Umezawa*, Osamu Hoshino, Shohei Sawaki, Haruki Sashida, and Kazuhiko Mori

Faculty of Pharmaceutical Sciences, Science University of Tokyo, Shinjuku-ku, Tokyo, 162, Japan

<u>Abstract</u>—— Since the title compound has been known to be derivable from $(\frac{1}{2})-\alpha-\Delta^2$ -lycorene-7-one $(\underline{14})$, its alternative synthesis is described briefly.

Two recent publications 1,2 concerning the synthesis of $(\frac{+}{-})$ -lycorine $(\underline{1})$, the main alkaloid of Lycoris radiata HERB (Amaryllidaceae), have prompted us to communicate our own results up to the present.

The (\pm) -cis-oxocyclohexanecarboxylic acid $(\underline{2})^3$, mp 188-189° (EtOH), was prepared in an acceptable yield by six steps⁴ starting from piperonal. Esterification (MeOH, conc.H₂SO₄) of $\underline{2}$, followed by acetalization, epimerization (KOt-Bu, t-BuOH, reflux, 0.5 hr) and hydrolysis (20%aq. KOH-EtOH, reflux) gave (\pm) -trans-5,5-ethylenedioxy-2-(3',4'-methylenedioxyphenyl)cyclohexanecarboxylic acid $(\underline{3})$, mp 208.5-209.5° (MeOH), in overall 92.3% yield.

Stereospecific conversion of the carboxyl group into an amino group was performed as follows. The Curtius rearrangement (benzene, reflux) of the acid azide derived from $\underline{3}$ by the conventional mixed anhydride method (1. C1COOEt, Et₃N, acetone; 2. NaN₃-H₂O) afforded the ($\frac{+}{2}$)- $\frac{1}{2}$ trans-cyclohexyl isocyanate ($\frac{4}{2}$), mp 88-88.5° (Et₂O-n-hexane, 73%), trans-diequatorial disposition of the phenyl and isocyanate groups in

HO, NO

$$2 R^1 = H$$
, $R^2 = COOH$
 $\frac{3}{R^3} R^1 = COOH$, $R^2 = H$, $R^3 = OCH_2CH_2O$

 $\underline{4}$ being explicitly indicated by the presence of one-proton double triplets centered at δ 3.73 (J=11 and 5 Hz).

Cyclization of $\underline{4}$ with anhydrous phosphoric acid⁶ furnished a mixture of the ($\underline{+}$)-phenanthrid-6-one ($\underline{5}$) and ($\underline{6}$), re-acetalization of which gave ($\underline{+}$)-3,3-ethylene-dioxy-8,9-methylenedioxy-1,2,3,4,4a α ,5,6,10b β -octahydrophenanthrid-6-one ($\underline{6}$), mp 288-289° (dec.)(CHCl $_3$, 60%). The lactam carbonyl group of $\underline{6}$ was reduced with lithium aluminum hydride in boiling anhydrous dimethoxyethane leading to the ($\underline{+}$)-acetal amine ($\underline{7}$), mp 126-127° (MeOH-H $_2$ O, 93.3%).

Deacetalization of $\underline{7}$ with 6N hydrochloric acid at room temperature produced the (\pm)-keto amine ($\underline{8}$), mp 164-165.5° (EtOH, 73.5%) (lit. 7 164-165.5°), which was converted into (\pm)- α -lycorane-3,5-dione ($\underline{9}$), mp 196-199° (acetone, overall 31% yield from 8) [lit. 7 195-197° (dec.)] according to Hamada's method. 7

Regioselective transformation of the carbonyl group at 3-position to a 2,3-double bond was carried out by the Cope reaction. Reductive amination 8 of $\underline{9}$ with dimethylamine hydrochloride and sodium cyanoborohydride in anhydrous methanol afforded expectedly $(^{\pm})$ - α - $(3\beta$ -dimethylamino)lycorane-5-one $(\underline{10})$, mp 204-205° (acetone, 43%), stereochemistry of which was ascertained by the presence of one-proton multiplet $(W_{1/2} \ 22 \ Hz)$ at $\delta 2.82$ and one-proton double doublets $(J=10 \ and \ 6 \ Hz)$ at $\delta 3.15$ in the nuclear magnetic resonance (NMR) spectrum. N-Oxidation of $\underline{10}$ with m-chloroperbenzoic acid occurred under mild conditions $(-18^{\circ},\ 1.5\ hr)$ after column chromatographic purification on basic alumina to give the hygroscopic (\pm) -N-oxide $(\underline{11})$, mp 175-176° (dec.) (AcOEt-n-hexane, 95%), thermolysis of which at 200° produced as expected (\pm) - α - Δ^2 -lycorene-5-one $(\underline{12})$, mp 148-150° (AcOEt-n-hexane, 57%);NMR δ :

3.41 (1H, dd, J=7.5 and 10 Hz, C_{11c} -H), 5.90 (4H, s, C_{2} - and C_{3} -H and OCH₂O), 6.59, 6.69 (each lH, s, arom. H).

A facile synthesis of the Torssell's intermediate ($\underline{14}$) from $\underline{12}$ was achieved by transposition of the lactam carbonyl group at 5-position into that at 7-position. Reduction with lithium aluminum hydride in boiling dimethoxyethane of $\underline{12}$ produced ($\underline{^{\dagger}}$)- α - Δ^2 -lycorene ($\underline{13}$), mp 93-95° (MeOH-H₂O, 96.5%);NMR δ :3.20 (1H, td, J=9.7, 8.6, and 6.3 Hz, C_{3a}-H), 5.83 (2H, bs, C₂- and C₃-H), 6.57, 6.69 (each 1H, s, arom. H).

Oxidation of <u>13</u> with active manganese dioxide in boiling chloroform and column chromatography on silica gel of the reaction mixture with chloroform afforded <u>14</u>, mp 194.5-196° (EtOH, 69.7%) (lit. ² 196-198°). Comparison of NMR signals ⁹ of <u>14</u> with those of authentic ($^{\pm}$)- α - Δ ²-lycorene-7-one revealed their identity within experimental errors; <u>14</u>, NMR δ : 4.18 (1H, dd, J=11 and 7 Hz, C_{11c}-H), 5.87 (2H, bs, C₂-and C₃-H), 6.66 (1H, s, C₁₁-H), 7.46 (1H, s, C₈-H).

Linked to Torssell's experimental data, preparation of $\underline{14}$ constituted a formal synthesis of 1.

Now that stereochemistry of $\underline{9}$ was confirmed as such, we are currently exploring another possible route to (\pm) -dihydrolycorine (15) and/or $\underline{1}$ starting from $\underline{9}$.

ACKNOWLEDGEMENT The authors are grateful to Drs. K. Kotera and Y. Hamada for their interest and technical informations and to Dr. K. Torssell for NMR spectral identification.

REFERENCES AND FOOTNOTES

- Y. Tsuda, T. Sano, J. Taga, K. Isobe, J. Toda, H. Irie, H. Tanaka, S. Takagi, M. Yamaki, and M. Murata, J.C.S. Chem. Commun., 1975, 933; Y. Tsuda, T. Sano, J. Taga, K. Isobe, J. Toda, S. Takagi, M. Yamaki, M. Murata, H. Irie, and H. Tanaka, J. Chem. Soc. Perkin I, 1979, 1358.
- 2. O. Møller, E. Steinberg, and K. Torssell, Acta Chem. Scand., 1978, B32, 98.
- 3 All new compounds described gave satisfactory analytical (except 5, 11, and 13) and spectral data.
- 4 Cf. F. E. Ziegler and M. E. Condon, J. Org. Chem., 1971, 36, 3707.
- NMR spectra were measured on a JEOL FX 100 spectrometer (100 MHz) in $CDCl_3$ solution using $(CH_3)_ASi$ as the internal standard, unless otherwise noted.
- 6 L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis", vol. 1, John Wiley & Sons, Inc., N.Y., 1967, p. 860.
- 7 Y. Hamada, Ph.D. Dissertation, Kyushu University.
- 8 R. F. Borch, M. Bernstein, and H. D. Durst, <u>J. Am. Chem. Soc.</u>, 1971, 93, 2893.
- 9 The NMR spectrum was measured on a H1tachi R-24B spectrometer (60 MHz) in $CDCl_3$ solution using $(CH_3)_4Si$ as the internal standard.

Received, 27th August, 1979