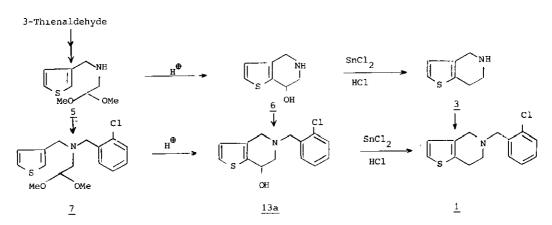

NEW SYNTHESIS OF THIENO $\overline{3}$, 2-c $\overline{7}$ PYRIDINES

Z Jean-Pierre MAFFRAND and Robert BOIGEGRAIN

PARCOR Département Recherche & Développement, 195, route d'Espagne, 31024-TOULOUSE CEDEX FRANCE


<u>Abstract</u> -A new synthesis of thieno $\sqrt{3}$, 2-c/pyr1dines by thermal rearrangement of 5-(2-thienyl)oxazolidines is described.

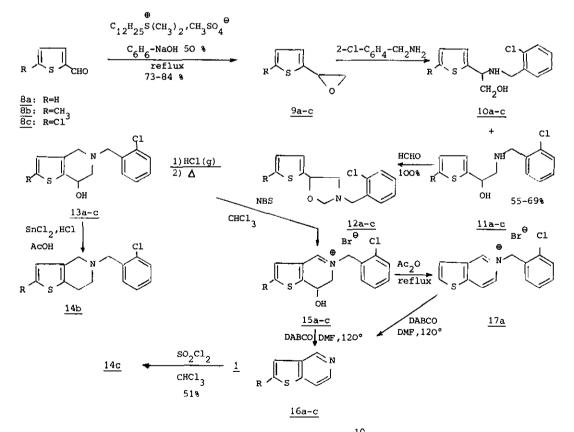
Ticlopidine (<u>1</u>), a new potent blood platelet aggregation inhibitor and antithrombotic agent^1 , was synthetized from thieno/<u>3</u>,2-<u>c</u>/pyridine itself (<u>2</u>) or its tetrahydrogenated derivative (<u>3</u>)² by the following reactions:

An other route to $(\underline{1})^3$ resulted from an application of Bobbitt's⁴ improvement of the general Pomeranz-Fritsch isoquinolines synthesis⁵ (scheme II).

SCHEME II

In this process, the formation of the aminoacetal intermediate (5) required the use of an expensive material, 3-thienaldehyde.

We wish now to report the synthesis of the intermediate hydroxy derivative $(\underline{13a})$ starting from 2-thienaldehyde as well as a new process for the preparation of 2-substituted thieno $\underline{3},2-\underline{c}$ pyridines.


In 1962, Corey an Chaykovsky⁶ realized the transformation of aldehydes and ketones into oxiranes by treatment with the sulfur ylid obtained by reacting trimethylsulfonium iodide with dimsylsodium in a tetrahydrofuran-dimethylsulfoxide solution.

It has been shown recently⁷ that the same ylid could be generated in a biphasic system (50% sodium hydroxide solution-methylenechloride) in the presence of tetrabutylammonium iodide as phase transfer catalyst.

Such a process was convenient for the synthesis of styrene oxide (92%) but failed in our hands to produce 2-thienyloxirane from 2-thienaldehyde.

However, this reaction succeeded when carried out by using a long chain alkylated sulfonium salt without phase transfer catalyst according to Tagaki and coll.⁸. Accordingly, epoxides $(\underline{9a-c})$ were easily obtained from thienaldehydes (<u>8a-c</u>) and dodecyldimethyl sulfonium methylsulfate⁹ (scheme III).

SCHEME III

Among these compounds only $(\underline{9a})$ had been previously prepared ¹⁰ from 2-chloro 1-(2-thienyl)ethanol. The oxirane ring opening with an excess of o-chlorobenzylamine at room temperature led to

HETEROCYCLES, Vol 12, No 11, 1979

a mixture of amino alcohols (<u>10</u>) and (<u>11</u>) from which (<u>11</u>) was isolated by fractionated crystallization. The treatment of oxiranes with other amines⁹ allowed the preparation of amino alcohols analogs to (11), some of which had been previously described¹¹.

By condensation with formaldehyde in 40 % aqueous solution, $(\underline{11a-c})$ gave the corresponding oxazolidines $(\underline{12a-c})$; their hydrochlorides were thermically rearranged to thienopyridines $(\underline{13a-c})$ by refluxing in toluene or diisopropylether; this rearrangement was similar to that described by Kametani and coll.¹² for the preparation of isoquinolines.

Dehydroxylation of (<u>13b</u>) and (<u>13c</u>) with stannous chloride-hydrochloric acid in acetic acid gave the Ticlopidine analogs (<u>14b</u>) and (<u>14c</u>). The 2-chloro derivative (<u>14c</u>) was also obtained by direct chlorination of (<u>1</u>) with sulfuryl chloride according to the Godt and Wann process¹³ used for the synthesis of other thiophen derivatives. Amino alcohols (<u>13a-c</u>) were also useful intermediates to the new corresponding thieno/ $\overline{3}$, 2- $\overline{c/p}$ pyridines (<u>16a-c</u>).

N-Bromosuccinimide oxidation of $(\underline{13a-c})$ in chloroform at room temperature yielded $(\underline{15a-c})$ which were immediately transformed into $(\underline{16a-c})$ by heating at 120°C in dimethylformamide in the presence of 1,4-diazabicyclo/2.2.1./octane : indeed both reactions, the expected dequaternisation¹⁴ and the dehydration, simultaneously occured. It was shown that the conversion of $(\underline{15a})$ into $(\underline{16a})$ could be carried out in two steps by dehydration with acetic anhydride followed by dequaternisation with DABCO in dimethylformamide.

<u> </u>	mp or	Yield	1
N°	bp/mmHg (°C)	8	¹ H.N.M.R. (ppm)
13a	199 - 201	93	CDC1 ₃ : 3,45(q,J=14;2); 3,75(s;2); 4,65(t;1);
	(EtOH)		6,85(q,J=5,5;2)
13b	189 - 191	92	$CDCl_3 : 2,40(s;3) ; 3,45(q,J=14;2) ; 3,75(s;2) ;$
	(EtOH)		4,60(t;1) ; 6,30(s;1)
13c	179 - 181	82	CDCl ₃ : 3,40(q,J=14;2); 3,75(s;2); 4,55(t;1);
	(EtOH)		6,40(s;1)
14b	hydrochloride 188 - 190	63	CDCl ₃ : hydrochoride : 2,35(s;3) ; 4,15(s;2) ;
	(iPrOH)		4,60(s;2);6,35(s;1);7,40(s;4)
14c	hydrochloride 208 - 210	60	CDCl ₃ : 2,75(s;4); 3,45(s;2); 3,75(s;2);
	(EtOH/H ₂ O)		6,45(s;1)
15a	162-164	56	$(DMSO d_6)$: 4,10(m;2) ; 5,40(t;1) ; 5,45(s;2) ;
	(EtOH)		7,75(q,J=5,5;2) ; 9,75(s;1)
15c	185 - 187	89	$(DMSO d_{6}) : 4,10(m;2) ; 5,30(t;1) ; 5,45(s;2) ;$
	(EtOH)		9,55(s;1)
16a	47 - 49	60	litt. (15)
	hydrochloride	58	CDCl ₃ : 2,45(s;3) ; 6,85(s;1) ; 7,55(d,J=5,5;1) ;
16b	189 - 191 (EtOH)		8,30(d,J=5,5;1) ; 8,85(s;1)
16c	85 - 86 /0,1	54	CDC1 ₃ : 7,10(s;1); 7,50(d,J=5,5;1); 8,30(s,J=5,5;1);
	45 - 46		8,80(S;1)
17a	201 - 203	64	(DMSO d ₆) : 6,25(s;2) ; 8,25(q,J=5,5;2) ; 9,00(s;2) ;
1. a	(iPrOH)	N 104	10.05(s;1)

15b "was not isolated

ACKNOWLEDGEMENT Mrs Marguerite Miquel, Andrée Saint-Blancat and Mr Alain Badorc rendered skilful technical assistance.

REFERENCES

1	M. Podesta, D. Aubert and J.C. Ferrand, Eur. J. Med. Chem., 1974, 9, 487.				
	J.J. Thebault, C.E. Blatrix, J.F. Blanchard and E.A. Panak, Clin. Pharmacol. Ther., 1975,				
	18, 485				
2	J.P. Maffrand and F. Eloy, Eur. J. Med. Chem., 1974, 9, 483.				
3					
4					
5					
6	E.J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1962, 84, 3782.				
	E.J. Corey and M. Chaykovsky, ibid., 1965, 87, 1353.				
7					
8					
9	R. Boigegrain and J.P. Maffrand, Brevet Français, 1978, 78, 12037.				
10	10 H. Hopff and R. Wandeler, Helv. Chim. Acta, 1962, 45, 983.				
	11 C. Corral, V. Darias, M.P. Fernandez-Tome, R. Madroñero and J. del Rio, J. Med. Chem.,				
	1973, 16, 882.				
	J.F. Baglı and E. Ferdinandi, <u>Can. J. Chem</u> ., 1975, 53, 2598.				
	J.F. Bagli, W.D. Mackay, E. Ferdinandi, M.N. Cayen, I. Vavra, Th. Pugsley and W. Lippmam,				
	J. Med. Chem., 1976, 19, 876.				
12	T. Kametani, K. Kıgasawa, M. Hiiragı and H. Ishimaru, <u>Chem. Pharm. Bull. (Tokyo</u>), 1969,				
	17, 2353.				
13	3 H.C. Godt and R.E. Wann, <u>J. Org. Chem</u> ., 1962, <u>2</u> 7, 1459.				
	T.L. Ho, <u>Synthesis</u> , 1972, <u>12</u> , 702.				
	T.L. Ho, Synthetic. Comm., 1973, 3, (2), 99.				
15	5 S. Gronowitz and E. Sandberg, <u>Arkiv. Kemi</u> ., 1970, <u>32</u> , 269				
	Received, 10th July, 1979				