STRUCTURAL INVESTIGATION OF AN ANTIBIOTIC SPORAVIRIDIN III¹. STRUCTURES OF VIRIDOPENTAOSE A AND C

Ken-ichi Harada, Susumu Ito, Toshiaki Murase, and Makoto Suzuki^{*} Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, JAPAN

Abstract — Viridopentaose A (<u>1</u>) and C (<u>2</u>) are new heteropentasaccharides, degradation products of sporaviridin. These structures were established by chemical degradative reactions, mass spectrometry, and ¹³C-NMR spectroscopy.

In the course of structural investigation of an antibiotic sporaviridin(SVD)², we obtained three heteropentasaccharides, viridopentaose A, B, and C on hydrolysis of N-acetylsporaviridin with aqueous ammonia. The structure of viridopentaose B has been determined with the detailed analysis of ¹³C-NMR spectra¹. The present communication deals with structural characterization of the remaining two pentasaccharides, viridopentaose A and C.

Viridopentaose A (<u>1</u>), mp 198-201°(dec.), $C_{34}H_{58}N_2O_{19}\cdot 3H_2O$, $[\alpha]_D^{20}$ -45.7°(c 0.3, MeOH), IR(KBr): 3500-3200 cm⁻¹(OH/NH), 1650 cm⁻¹(CO), ¹H-NMR(CD₃OD): δ 1.98 (NHCOCH₃), was a faintly hygroscopic white powder. Acidic methanolysis of <u>1</u> with methanolic hydrogen chloride (1.6%, reflux, 8hr), followed by neutralization and evaporation gave a mixture which was fractionated chromatographically yielding each anomeric pair of methyl 3-acetamido-2,3,6-trideoxy-<u>p</u>-arabino-hexopyranoside (methyl N-acetyl-<u>p</u>-acosaminide, <u>3</u>)³ and methyl 6-deoxy-<u>p</u>-glucopyranoside (methyl <u>p</u>-quinovoside, <u>4</u>)⁴ in 2:3 moler proportions.

Field desorption (FD) mass spectrum of $\underline{1}$ showed a protonated ion peak (MH⁺) at m/z 799 and a cluster ion peak (M+Na)⁺ at m/z 821, which indicated the molecular weight of $\underline{1}$. Furthermore, chemical ionization (CI) mass spectra of the permethylated viridopentaose A using isobutane and ammonia as reagent gas gave the useful structural informations. Thus a protonated molecular ion peak (MH⁺) was observed at m/z 939 and the fragment ion peaks at m/z 740, 541, and 381 were consistent with tetra-, tri-, and di-saccharide ions, respectively, which were available for the determination of the sequence of the monosaccharide units mentioned above (Figure).

4hr

20°C

c: 4.5% HCl (aqueous)-MeOH

The degradative reactions of $\underline{1}$ by use of the condition(b) and (c) gave tetrasaccharide $\underline{5}$, mp 207-209°(dec.) and trisaccharide $\underline{6}$, mp 235-238°(dec.)(Scheme).

Viridopentaose C (2), mp 191-193°(dec.), $C_{34}H_{58}N_2O_{20}\cdot 3H_2O$, $[\alpha]_D^{20}$ -31.0(c 0.3, MeOH), IR(KBr): 3500-3200 cm⁻¹(OH/NH), 1660-1620 cm⁻¹(CO), ¹H-NMR(CD₃OD): δ 1.98 (NHCOCH₃), was a faintly hygroscopic white powder. Acidic methanolysis of <u>2</u> using the condition(a) gave each anomeric pair of <u>3</u>, <u>4</u>, and methyl <u>D</u>-glucopyranoside <u>7</u> in 2:2:1 moler proportions.

FD mass spectrum of $\underline{2}$ provided a cationised cluster ion peak $(M+Na)^+$ at m/z 837 and in CI mass spectra of permethylated $\underline{2}$, a protonated molecular ion (m/z 969) was observed and the fragment ion peaks appeared at m/z 770 and 571 which corresponded to tetra- and tri-saccharide ions, respectively (Figure).

The partial methanolysis of 2 with the conditions described above yielded two products, 8, mp 213-215° (dec.) and 9, mp 168-169° (dec.).

The structures of viridopentaose A (<u>1</u>) and C (<u>2</u>) were established mainly on the basis of ¹³C-NMR spectroscopic evidence as follows. The ¹³C-NMR chemical shifts of <u>1</u> could be assigned by comparison with those of <u>3</u>, <u>4</u>, <u>5</u>, <u>6</u>, and <u>10</u> (Table). The ¹³C-NMR spectrum of <u>1</u> showed five signals due to anomeric carbons. The resonance at 93.2 ppm represented an anomeric carbon of the reducing <u>D</u>-quinovosyl residue (α -configuration). Three (105.4, 101.7, 101.3 ppm) of the four remaining signals, except for that of the non-reducing <u>D</u>-quinovose moiety, were assignable to the anomeric carbon in a β -configuration as compared with the chemical shifts of the corresponding methyl glycosides. The last signal at 100.9 ppm suggested the presence of the anomeric carbon in an α -configuration. However, the 3.5 ppm downfield shifts were observed at C-1' of non-reducing <u>D</u>-quinovosyl residue in <u>5</u> and <u>6</u>, when the acosamines were removed from <u>1</u> by selective methanolysis⁵. Accordingly, the anomeric carbon of the non-reducing <u>D</u>-quinovosyl residue should be also in a β -configuration.

By considering glycosidation shift⁶ (82.9 ppm at C-2 and 85.8 ppm at C-4 in the reducing <u>D</u>-quinovose moiety), the sterically hindered adjacent diglycosidation⁵ (75.7 and 76.0 ppm at C-2' and C-3' in the non-reducing <u>D</u>-quinovose moiety), and the structure of viridopentaose B¹, the four glycosidic linkages in <u>1</u> were determined at C-2 and C-4 positions of the reducing <u>D</u>-quinovose and at C-2' and C-3' positions of the non-reducing <u>D</u>-quinovose moiety. Consequently, it is proved that viridopentaose A (<u>1</u>) is an O-(N-acety1- β -<u>D</u>-acosaminopyranosy1)-(1+2)-O-[N-acety1- β -acosaminopyranosy1-(1+3)]-O- β -<u>D</u>-quinovopyranosy1-(1+4)-O-[β -<u>D</u>-quinovopyranosy1-

Table	^{L3} C-NMR	chemical	shifts	of	compounds	1	~ 10 ^a	
	· · · · · · · ·				· •	1000		

	ī	<u>.</u>	5	<u>6</u>			2	8	9
Quinovos	e					Glucose			
C-1"	105	4 1	05 3	105.2		C-1	105.6	105.4	105.4
C-1 C-2"	205.		75 /	75.3		C-2	74.9	74.8	74.8
0~2"	75.	.0	73.4	2.5		C-2 C-3	78 1	77.6	77.59
C~3"	77.	. /	77.5	76 6		C=3	70.1	71 2	71.2
C~4"	/6.	.5	76.7	70.0		0.5	71.1	77.6	77 59
C~5"	/3.	.0 • b	10.00	10.00		C-5	62 5	62.4	62.4
C~6"	18.	.12	18.0 °	18.09		C-0	02.5	02.4	02.4
Quinovos	se					Quinovose			
C-1	93.	.2	92.9	92.9		C-1	93.2	92.7	92.7
C-2	82.	.9	81.9	81.8		C-2	83.3	82.1	82.1
C-3	73.	.0	71.8	71.7		C-3	73.2	71.7	71.7
C-4	85.	8	87.1 <i>f</i>	87.0		C-4	85.9	87.0	87.0
C-5	67.	.6	66.4	66.4		C-5	67.8	66.4	66.4
C-6	18.	30	18.10	18.1 <i>9</i>		C-6	18.2 ^b	18.0	17.9
Quinovos	e					Quinovose			
C-1'	100.	.9 1	04.4	104.4		c-1'	101.0	104.4	104.4
C-2'	75.	70	74.0	74.8		C-2'	76.2 <i>°</i>	74.0	75.0
C-3'	76.	00	86.9f	77.2		C-3'	76.7 <i>°</i>	86.8	77,2 ⁹
C-41	74	.7	74.8	76.4		C-4'	74.9	75.0	76.4
C-5'	73	.0	73.0	73.3		C-5'	73.4	72.9	73.3
C-6'	18	1 ^b	18.00	18.04	r	C-6'	18.3 <i>b</i>	18.0	17.9
Acosamir	ne					Acosamine			
C-1	101	.7 <i>d</i> 1	02.1			C-1	101.5 <i>d</i>	102.1	
C-2	37	9	37.9			C-2	38.1	37.8	
C-2	52	4	52 2			C-3	52,3 <i>°</i>	52.2	
C-4	75	0	75 4			C-4	75.3 J	75.4	
0.5	74	-	7/ 8			C-5	74.9	74.8	
C-6	18	3 b	18.2 °			C-6	18.3 <i>b</i>	18.2	
Acosamir	ne					Acosamine			
6 H	101	эđ				C-1'	101.7 ^d		
0-21	101	ă				C-2'	38.1		
0.2	57					C-3'	52.6 e		
C-3.	32	•				C-41	75 9 f		
C-4	75	• ⁰				C-4 C-51	74.9		
C-5.	74	• / • Þ				C-5	19.00		
C-6'	18	.90				C-6.	19.0-		
M	Methyl N-a	cetyl-	M	ethyl		Methyl		Ouinow	NSA (10)
	acosamin	ide (3)		quinovo	sıde (4)	gluco	sıde (<u>7</u>)	Zatuove	<u>, , , , , , , , , , , , , , , , , , , </u>
	α	β		α	β	α	β	α	β
C-1	98.7	102.0		100.9	105.0	100.6	105.1	93.6	97.7
C-2	36.9	38.1		73.5	75.0	72.9	74.8	73.9	76.3
C-3	49.7	52.4		74.7	77.6	74.6	77.8	74.5	77.6
C-4	76.5	75.9		77.1	76.8	71.1	71.4	77.3	76.9
C-5	69.5	74.6		68.4	73.1	72.9	77.6	68.1	73.1
C-6	18.3	18.3		18.0	18.0	62.1	62.5	18.1	18.1

 α $^{13}{\rm C-NMR}$ spectra were recorded on a JEOL JNM-FX100 NMR spectrometer at 25.05MHz in CD_3OD with TMS as an internal reference.

b, c, d, e, f, g Assignments may be reversed in each vertical column.

$(1 \rightarrow 2)$]- α -D-quinovopyranose.

In the same manner, we could also assign the 13 C-NMR chemical shifts of 2 (Table), which were compatible with those of 1, except for those of C-4, 5, and 6 of the <u>D</u>-glucose moiety. These results pointed out that viridopentaose C (2) had a <u>D</u>-glucose moiety in the place of a terminal <u>D</u>-quinovose moiety in viridopentaose A (1).

Therefore, it is concluded that viridopentaose C is an O-(N-acetyl- β - \underline{D} -acosaminopyranosyl)-(1+2)-O-[N-acetyl- β - \underline{D} -acosaminopyranosyl-(1+3)]-O- β - \underline{D} -quinovopyranosyl-(1+4)-O-[β - \underline{D} -glucopyranosyl-(1+2)]- α - \underline{D} -quinovopyranose.

References

- Part II. "Application of ¹³C-NMR to the structural elucidation of viridopentaose B", K. I. Harada, S. Ito, and M. Suzuki, <u>Tetrahedron Lett.</u>, in press.
- T. Okuda, Y. Ito, T. Yamaguchi, T. Furumai, M. Suzuki, and M. Tsuruoka, J. Antibiotics, Ser. A, 1966, 19, 85.
- 3. K. I. Harada, S. Ito, and M. Suzuki, Carbohyd. Res., 1979, 75, C17.
- 4. M. E. Evans, L. Long, Jr., and F. W. Parrish, J. Org. Chem., 1968, 33, 1074.
- 5. a) N. Yamaoka, T. Usui, H. Sugiyama, and S. Seto, <u>Chem. Pharm. Bull. (Tokyo)</u>, 1974, 22, 2196.
 - b) R. U. Lemieux and H. Driguez, J. Am. Chem. Soc., 1975, 97, 4063.
- a) T. Usui, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seto,
 J. Chem. Soc. Perkin I, 1973, 2425.
 - b) P. A. J. Gorin, Carbohyd. Res., 1975, 39, 3.
 - c) K. Tori, S. Seo, Y. Yoshimura, M. Nakamura, Y. Tomita, and H. Ishii, Tetrahedron Lett., 1976, 4163.
 - d) R. Kasai, M. Suzuo, J. Asakawa, and O. Tanaka, <u>Tetrahedron Lett.</u>, 1977, 175.

Received, 17th September, 1979