SYNTHESIS OF (6R, 7R)-PHENYLACETYLMETHYL-3-(1-METHYL-1H-TETRAZOL-5-YL)THIOMETHYL-1-OXA-1-DETHIACEPHALOSPORANIC ACID[†]

Shoichiro Uyeo,* Kyo Okada and Wataru Nagata Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

<u>Abstract</u> — Synthesis of the title compound 8 from the 7α -methoxy, 7β -amino-1-oxacephem 3, involving stereocontrolled reduction of the 7-phenylacetylmethylene derivatives 6 to 7β -phenylacetylmethyl derivative 7, is described.

1-Oxacephem antibiotics $\underline{1}$, in which compound $\underline{2}$ (6059-S) is representative, have recently attracted much attention because of their more favourable antibacterial activity than that of cephalosporins. As a part of our continuing work on 1-oxacephems, we have prepared the title compound $\underline{8}$, in which the nitrogen atom at C-7 of the corresponding 1-oxacephem antibiotics is replaced by carbon (methylene), for biological evaluation.

7-Oxo-1-oxacephem $\underline{4}$, which exists as the hydrated form, 2 was prepared in good yield from methoxy-amine $\underline{3}$, 1 the nucleus of $\underline{2}$, on brief treatment with perchloric acid in a mixture of water, acetone, and tetrahydrofuran at room temperature. Recent development of a stereocontrolled and straightforward 1-oxacephem synthesis in our laboratories 3 has made the methoxyamine $\underline{3}$ readily available in quantity. The 7-oxo compound $\underline{4}$ reacted smoothly with Wittig reagent $\underline{5}$ at 0° in methylene dichloride, giving a stereoisomeric mixture of conjugated ketones $\underline{6}$ in good yield (90% from $\underline{3}$). Stereoselective reduction of both the exo double bonds (E and Z) in $\underline{6}$ to 7 β -phenylacetylmethyl derivative $\underline{7}^4$ was conveniently achieved in a yield of 35% by zinc-acetic acid reduction in methylene dichloride under ice-cooling. The 7 α -isomer was not detected in this reaction. The low yield of $\underline{7}$ may be attributed to a partial reductive elimination of the methyltetrazolylmercapto group during the course of the reaction. In fact when this reduction procedure was applied to 3-methylcephem derivatives $\underline{9}$ (stereoisomeric mixture), prepared similarly from the corresponding 7-oxocephem

PhCH₂COCH=PPh₃

$$\frac{5}{2}$$
PhCH₂COCH=PPh₃

$$\frac{5}{2}$$
PhCH₂COCH
$$\frac{6}{2}$$
PhCH₂COCH=PPh₃

$$\frac{5}{2}$$
PhCH₂COCH=PPh₃

$$\frac{5}{2}$$

compound, only the 7 β -substituted product 10 was obtained in a good yield of 70%. Deesterification of 7 with trifluoroacetic acid and anisole gave the title compound 8. $\frac{4}{3}$

Biological activity of $\underline{8}$ was found to be disappointingly low compared to that of the 7β -phenylacetamido analog, and therefore no further work along this line was pursued.

REFERENCES AND NOTES

- † Dedicated to Prof. Hamao Umezawa on the occasion of his 65th birthday.
- M. Narisada, T. Yoshida, H. Onoue, M. Ohtani, T. Okada, T. Tsuji, I. Kikkawa,
 N. Haga, H. Satoh, H. Itani, and W. Nagata, J. Med. Chem., 1979, 22, 757.
- 2. Hydrogen bonding between 78-OH and 1-oxygen in $\underline{4}$ seems to stabilize the hydrated form.
- 3. a) S. Uyeo, I. Kikkawa, Y. Hamashima, H. Ona, Y. Nishitani, K. Okada, T. Kubota, K. Ishikura, Y. Ide, K. Nakano, and W. Nagata, J. Am. Chem. Soc., 1979, 101, 4403; b) M. Yoshioka, T. Tsuji, S. Uyeo, S. Yamamoto, T. Aoki, Y. Nishitani, S. Mori, H. Satoh, Y. Hamada, H. Ishitobi, and W. Nagata, submitted to J. Am. Chem. Soc.
- 4. $\frac{7}{2}$ IR (CHCl₃): 1785, 1715 cm⁻¹, NMR (CDCl₃) δ : 2.73-2.95 (m, 2H, -CH₂CO), 3.68 (s, 2H, PhCH₂-), 3.75 (s, 3H, N-CH₃), 3.8-4.2 (m, 1H, C₇-H), 4.21 (s, 2H, -CH₂-STet), 4.5 (bs, 2H, OCH₂-), 4.98 (d, 1H, J = 4 Hz, C₆-H), 6.88 (s, 1H, -CHPh₂), 7.0-7.60 (m, 15H, aromatic). $\frac{8}{2}$ IR (CHCl₃): 3600-2400, 1782, 1718 cm⁻¹.

Received, 6th October, 1979