A [15]ANNULENONE-[15]ANNULENYL ION CYCLE DRIVEN BY PROTON GRADIENT

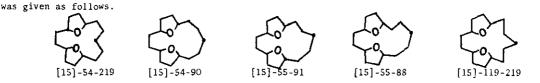
Haru Ogawa and Taiji Imoto

Faculty of Pharmaceutical Sciences, Kyushu University, Higashiku, Fukuoka, Japan

Hidefumi Kato and Yõichi Taniguchi

Department of Chemistry, Kurume Technical College, Komorino, Kurume, Japan

A [15]annulenone-[15]annulenyl ion cycle driven by proton gradient was described. The cycle converts formally proton gradient into free energy through the following four step sequence.


- (i) Protonation of [15]-54-219 annulenone below 45°C affords a mixture of [15]-54-90 and
 [15]-54-219 annuleny1 ions.
- (ii) Thermal isomerization of [15]-54-219 annulenyl ion occurrs at $20 \, \sim -30^{\circ}$ to give [15]-55-91 annulenyl ion. This process expells the inside OH group of the 54-219 conformer toward the outside of the ring.
- (iii) Deprotonation of [15]-55-91 annulenyl ion gives [15]-55-91 annulenone.
- (iv) Finally, [15]-54-219 annulenone is regenerated by the isomerization of [15]-55-91annulenone.

Following observations were collected.

- Isomerization of [15]-54-219 annulenyl ion is depressed by lowering temperature below - 45°C.
- (2) Isomerization of [15]-54-219 annulenyl ion conducted at 30A -20°C afforded a mixture of possible isomers, such as [15]-55-88, and [15]-119-219 annulenyl ions.
- (3) Conformational change occurred in the second step of the cycle raises the pk_a of [15]-55-91 annulenyl ion at least by <u>ca</u>. 1 than that of the 54-219-isomer.
- (4) [15]-55-91 annulenone was proved to be strongly diatropic.
- (5) Thermal isomerization of [15]-55-91 annulenone was studied kinetically in some detail by nmr spectroscopy.

Of course, we need much more intensive studies for the elucidation of this [15]annulenone-[15]annulenyl ion cycle.

Cordification of all the possible isomers encounter in this cycle and related compounds

