AZETIDINE-2,4-DIONES VIA PHOTOINDUCED RING CONTRACTION OF SUCCINIMIDES

Kazuhiro Maruyama, Takeshi Ishitoku, Yasuo Kubo and Takuji Ogawa Department of Chemistry, Faculty of Science, Kyoto University

Kyoto, 606 Japan

Photolysis of an acetonitrile solution of N-methylcyclohexane-1,2-dicarboximide (1) gave a ring contracted product N-methylcyclohexane-1,1-dicarboximide (2) (mp 96-97°C, 17%) together with a small amount of N-formyl-N-methyl-1-cyclohexene-1-carboxamide (3) (3%). The starting material recovered (60%) was partly isomerized to its trans isomer. When treated with methylamine, 2 gave N,N'-dimethylcyclohexane-1,1dicarboxamide quantitatively, and further photolysis of 2 in methanol gave methyl cyclohexanecarboxylate (35%) and 5-methoxy-4,4-pentamethylene-2-methyl-isoxazolid-3one (60%). Similarly, irradiation of succinimide derivatives gave the corresponding azetidine-2,4-diones.

A mechanism involving two photon process is proposed. First, $\frac{1}{2}$ undergoes acleavage reaction to give a biradical, which produces $\frac{3}{2}$. The product $\frac{3}{2}$ will absorb light once again to give a 1,4-biradical, which could collapse to $\frac{2}{2}$. The following experiments support this mechanism. First, irradiation of an acetonitrile solution of $\frac{3}{2}$ gave $\frac{2}{2}$. Secondly, at 254nm the extinction coefficient of $\frac{3}{2}$ is about ten times larger than that of $\frac{1}{2}$. Thirdly, the time dependent variation of 2 and 3 suggests that $\frac{3}{2}$ should be an intermediate of $\frac{2}{2}$. Further, photolysis of N-formyl-N-methyl- α,β -unsaturated amides like $\frac{3}{2}$ gave the corresponding azetidine-2,4-diones in much better yield.