## PHOTOCHEMISTRY OF CONJUGATED NITROGEN-CARBONYL SYSTEMS

PHOTOADDITION REACTION OF HYDROXYLAZOBENZENES AND THE RELATED THIONE ANALOGS WITH OLEFINS

## Yuichi Kanaoka, Masato Hasebe and Eisuke Sato

## Faculty of Pharmaceutical Sciences, Hokkaido University

## Sapporo, 060, Japan

As part of systematic photochemical research on conjugated nitrogen-carbonyl systems, which stemed from our studies on nitrogen-carbonyl systems such as imides, amides and nucleotides, we have started exploring photoreactions of a variety of azobenzens. In the present work photoaddition reactions of hydroxyazoaromatic compounds and their sulfur analogs with olefins were investigated.

On irradiation in acetonitrile, 3(2H)-pyridazinones la undergo [2+2]cycloaddition with olefins such as 2-methy1-2-butene  $\underline{2}$  to afford cyclobutane derivatives  $\underline{3}$  in a stereoselective manner. By contrast, the photoreaction of their sulfur analog <u>1b</u> took a quite different course; namely, irradiation of 1b in the presence of 2 mainly gave rise to 4.





In the case of 2-thiouracil, photoaddition of  $\frac{2}{2}$  occured both at the  $C_5-C_6$  double bond and the thione group leading to 5 and 6, respectively. From the parent member of the family, 2mercaptopyridine and 2-mercaptopyrimidine, the rearranged thiol products 7 were formed under similar conditions.

Finally, 2,4-pyridinedione 8, one of the simplest conjugated nitrogen-carbonyl systems, was examined. As expected, this compound underwent either cyclobutane formation or dimerization depending upon reaction conditions.



REFERENCES

1) Y.Kanaoka, Acc.Chem.Res. 11. 407 (1978).